Predicting Unplanned Hospital Readmissions using Patient Level Data
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3436
Ending Page
Alternative Title
Abstract
The rate of unplanned hospital readmissions in the US is likely to face a steady rise after 2020. Hence, this issue has received considerable critical attention with the policy makers. Majority of hospitals in the US pay millions of dollars as penalty for readmitting patients within 30 days due to strict norms imposed by the Hospital Readmission Reduction Program. In this study, we develop two novel models: PURE (Predicting Unplanned Readmissions using Embeddings) and Hybrid DeepR, which uses the historical medical events of patients to predict readmissions within 30 days. Both these models are hybrid sequence models that leverage both sequential events (history of events) and static features (like gender, blood pressure) of the patients to mine patterns in the data. Our results are promising, and they benchmark previous results in predicting hospital readmissions. The contributions of this study add to existing literature on healthcare analytics.
Description
Keywords
Big Data on Healthcare Application, deep learning, embeddings, healthcare, readmissions, sequence models
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.