Automatically Quantifying Customer Need Tweets: Towards a Supervised Machine Learning Approach

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The elicitation of customer needs is an important task for businesses in order to design customer-centric products and services. While there are different approaches available, most lack automation, scalability and monitoring capabilities. In this work, we demonstrate the feasibility to automatically identify and quantify customer needs by training and evaluating on previously-labeled Twitter data. To achieve that, we utilize a supervised machine learning approach. Our results show that the classification performances are statistically superior-”but can be further improved in the future.

Description

Keywords

Social Information Systems, automated need elicitation, customer needs, e-mobility, supervised machine learning, twitter

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.