Service-Oriented Cognitive Analytics for Smart Service Systems: A Research Agenda

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The development of analytical solutions for smart services systems relies on data. Typically, this data is distributed across various entities of the system. Cognitive learning allows to find patterns and to make predictions across these distributed data sources, yet its potential is not fully explored. Challenges that impede a cross-entity data analysis concern organizational challenges (e.g., confidentiality), algorithmic challenges (e.g., robustness) as well as technical challenges (e.g., data processing). So far, there is no comprehensive approach to build cognitive analytics solutions, if data is distributed across different entities of a smart service system. This work proposes a research agenda for the development of a service-oriented cognitive analytics framework. The analytics framework uses a centralized cognitive aggregation model to combine predictions being made by each entity of the service system. Based on this research agenda, we plan to develop and evaluate the cognitive analytics framework in future research.

Description

Keywords

Smart Service Systems: Analytic, Cognition and Innovation, analytics framework, cross-entity learning, cognitive learning, research agenda, smart service systems

Citation

Extent

8 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.