Warfarin Dose Estimation on High-dimensional and Incomplete Data

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3455

Ending Page

Alternative Title

Abstract

Warfarin is a widely used oral anticoagulant worldwide. However, due to the complex relationship between individual factors, it is challenging to estimate the optimal warfarin dose to give full play to its ideal efficacy. Currently, there are plenty of studies using machine learning or deep learning techniques to help with the optimal warfarin dose selection. But few of them can resolve missing values and high-dimensional data naturally, that are two main concerns when analyzing clinical real world data. In this work, we propose to regard each patient’s record as a set of observed individual factors, and represent them in an embedding space, that enables our method can learn from the incomplete date directly and avoid the negative impact from the high-dimensional feature set. Then, a novel neural network is proposed to combine the set of embedded vectors non-linearly, that are capable of capturing their correlations and locating the informative ones for prediction. After comparing with the baseline models on the open source data from International Warfarin Pharmacogenetics Consortium, the experimental results demonstrate that our proposed method outperform others by a significant margin. After further analyzing the model performance in different dosing subgroups, we can conclude that the proposed method has the high application value in clinical, especially for the patients in high-dose and medium-dose subgroups.

Description

Keywords

Big Data on Healthcare Application, deep learning, dose prediction, high-dimensional features, incomplete data, warfarin

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.