Unsupervised Ranking of Numerical Observations based on Magnetic Properties and Correlation Coefficient

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper addresses a novel unsupervised algorithm to rank numerical observations which is important in many applications in computer science, especially in information retrieval (IR). The proposed algorithm shows how correlation coefficients between attribute values and the concept of magnetic properties can be explored to rank multi-attribute numerical objects. One of the main reasons of using correlation coefficients between attribute values and the concept of magnetic properties is that they are easy to compute and interpret. Our proposed Unsupervised Ranking using Magnetic properties and Correlation coefficient (URMC) algorithm can use some or all the numerical attributes of objects and can also handle objects with missing attribute values. The proposed algorithm overcomes a major limitation of the state-of-the-art technique while achieving excellent results.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, Decision Analytics, Mobile Services, and Service Science, Correlation coefficient, information retrieval, magnetic properties, multi-attribute, unsupervised ranking.

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.