What Do Customers Say About My Products? Benchmarking Machine Learning Models for Need Identification

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2120

Ending Page

Alternative Title

Abstract

Needmining is the process of extracting customer needs from user-generated content by classifying it as either informative or uninformative regarding need content. Contemporary studies achieve this by utilizing machine learning. However, models found in the literature cannot be compared to each other because they use private data for training and testing. This study benchmarks all previously suggested needmining models including CNN, SVM, RNN, and RoBERTa. To ensure an unbiased comparison, this study samples and annotates a dataset of customer reviews for products from 4 different categories from amazon. Henceforth, the dataset is publicly available and serves as a gold-set for future needmining benchmarks. RoBERTa outperformed other classifiers and seems to be best suited for needmining. The relevance of this study is reinforced by the fact that this benchmark creates a different hierarchy between models than otherwise suggested by comparing the results of previous studies.

Description

Keywords

Data Analytics, Data Mining, and Machine Learning for Social Media, customer needs, machine learning, natural language processing, product innovation

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.