Machine Learning Based Diagnostics of Developmental Coordination Disorder using Electroencephalographic Data

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3426

Ending Page

Alternative Title

Abstract

We report on promising results concerning the fast and accurate diagnosis of developmental coordination disorder (DCD) which heavily impacts the life of affected children with emotional and behavioral issues. Using a machine learning classifier on spectral data of electroencephalography (EEG) recordings and unfolding the traditional frequency bandwidth in a fine-graded equidistant 99-point spectrum we were able to reach an accuracy of over 99.35 percent having only one misclassification. Our machine learning work contributes to healthcare and information systems research. While current diagnostic methods in use are either complicated, time-consuming, or inaccurate, our automated machine-based approach is accurate and reliable. Our results also provide more insights into the relationship between DCD and brain activity which could stimulate future work in medicine.

Description

Keywords

Big Data on Healthcare Application, developmental coordination disorder, electroencephalography, healthcare, it, machine learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.