Quasi-periodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere
Date
2013-10
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Physics
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Cosmic rays and solar energetic particles may be accelerated to relativistic
energies by shock waves in astrophysical plasmas. On the Sun,
shocks and particle acceleration are often associated with the eruption
of magnetized plasmoids, called coronal mass ejections (CMEs).
However, the physical relationship between CMEs and shock particle
acceleration is not well understood. Here, we use extreme ultraviolet,
radio and white-light imaging of a solar eruptive event on 22 September
2011 to show that a CME-induced shock (Alfvén Mach number 2:4+0:7
-0:8) was coincident with a coronal wave and an intense metric radio burst
generated by intermittent acceleration of electrons to kinetic energies
of 2{46 keV (0.1{0.4 c). Our observations show that plasmoid-driven
quasi-perpendicular shocks are capable of producing quasi-periodic acceleration
of electrons, an effect consistent with a turbulent or rippled
plasma shock surface.
Description
Keywords
Citation
Extent
20
Format
Geographic Location
Time Period
Related To
Related To (URI)
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.