What's to Automate? A Task Analysis of AI-enabled Start-ups

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1611

Ending Page

Alternative Title

Abstract

Automation of tasks as a result of advances in Artificial Intelligence (AI) is currently one of the major economical drivers. However, the varying effectiveness of AI usage across occupations and industries suggests that the impact of AI diffusion is uneven. Thus, it is imperative to understand which types of tasks are more or less prevalent in AI-enabled businesses. Using a cross-sectional dataset of 27,700 start-ups and occupation data, we utilize word embedding to link start-ups to their respective underlying tasks. We compare the task types of AI-enabled with non-AI start-ups in the services and platforms domain using a suitability for machine learning metric. The results show that analytical, logistical, and statistical tasks predominate among AI-enabled start-ups while services with customer proximity have a smaller share and the overall task diversity is lower. The implications of our findings are discussed in the light of labor theory and the economies of scale of AI start-ups.

Description

Keywords

Technology and Analytics in Emerging Markets (TAEM), artificial intelligence, automation workforce, labor structure, suitability for machine learning

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.