Stochastic Synthetic Data Generation for Electric Net Load and Its Application

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3147

Ending Page

Alternative Title

Abstract

The increasing integration of renewable energy in electric power systems focuses attention on realistic representation of ”net load” because it aggregates the information from both demand and the renewable supply side; net load is the remaining demand that must be met by non-renewable resources. However, the net load data is not readily accessible because of cost, privacy, and security concerns. Furthermore, even if historical data is available, multiple stochastic scenarios are often needed for a wide range of power system applications. To address these issues, this paper proposes a stochastic synthetic net load profile generation approach. A seasonal detrending technique is combined with the modified Fractional Gaussian Noise method to deal with the complex multi-periodic seasonal trends in the net load profile. A thorough statistical validation and temporal correlation check are performed to show the quality of the synthetic data. The benefits of the synthetic data are demonstrated by a microgrid energy management problem.

Description

Keywords

Distributed, Renewable, and Mobile Resources, seasonal detrending technique, statistical validation, synthetic net load data generation, temporal correlation

Citation

Extent

11 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.