An Approach for Weed Detection Using CNNs And Transfer Learning

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

888

Ending Page

Alternative Title

Abstract

To prevent yield losses, it is critical to eliminate competition between food crops and weeds at the onset of plant growth. While uniform spraying of herbicides can be economically and environmentally inefficient, site-specific weed management (SSWM) counteracts this by reducing the amount of chemical application with localized spraying of weed species. Past research on weed detection in SSWM has used a large deep convolutional neural network (DCNN) for weed detection. These models are, however, computationally expensive and prone to overfitting on smaller datasets. In this paper, we propose an approach to detecting weeds amongst plant seedlings using transfer learning in a small network. Our approach combines the mobile-sized EfficientNet with transfer learning to achieve up to 95.44% classification accuracy on plant seedlings. Due to the robustness of transfer learning methods, this approach would be beneficial in improving both the classification accuracy and generalizability of current weed detection methods.

Description

Keywords

Analytics and Decision Support for Green IS and Sustainability Applications, convolutional neural network, deep learning, efficientnet, plant seedling, precision agriculture, smart farming, transfer learning, weed detection

Citation

Extent

8 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.