Understanding User Uncertainty during the Implementation of Self-Service Business Intelligence: A Thematic Analysis

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Owing to Self-Service Business Intelligence (SSBI) systems’ transformative power for organizations, substantial user uncertainties often blight their potential. Although these uncertainties pose a significant threat to effective SSBI implementation, their sources and determinants remain unclear. We conducted semi-structured interviews with 15 current users of a recently implemented SSBI system to empirically explore the relevant factors of user uncertainty. We undertook a rigorous thematic analysis of the collected data, thereafter developing a thematic map to visualize user uncertainties. This map uncovered three unexplored important factors (work routine change, social dynamics and fear of AI) for future research. Our findings show that users are not only perturbed by “hard” factors (e.g. a lack of technical understanding), but also by “soft” factors (social dynamics, fear of AI and nontransparency). Practitioners can use the thematic map to identify and observe potential uncertainties and to develop adequate procedures.

Description

Keywords

Business Intelligence, Business Analytics and Big Data: Innovation, Deployment and Management, Organizational Systems and Technology, Acceptance, Adoption, Implementation, SSBI, Uncertainty,

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.