Dimensional Reduction Analysis for Constellation-Based DNA Fingerprinting to Improve Industrial IoT Wireless Security
Files
Date
2019-01-08
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The Industrial Internet of Things (IIoT) market is skyrocketing towards 100 billion deployed devices and cybersecurity remains a top priority. This includes security of ZigBee communication devices that are widely used in industrial control system applications. IIoT device security is addressed using Constellation-Based Distinct Native Attribute (CB-DNA) Fingerprinting to augment conventional bit-level security mechanisms. This work expands upon recent CB-DNA “discovery” activity by identifying reduced dimensional fingerprints that increase the computational efficiency and effectiveness of device discrimination methods. The methods considered include Multiple Discriminant Analysis (MDA) and Random Forest (RndF) classification. RndF deficiencies in classification and post-classification feature selection are highlighted and addressed using a pre-classification feature selection method based on a Wilcoxon Rank Sum (WRS) test. Feature down-selection based on WRS testing proves to very reliable, with reduced feature subsets yielding cross-device discrimination performance consistent with full-dimensional feature sets, while being more computationally efficient.
Description
Keywords
Cyber Threat Intelligence and Analytics, Software Technology, DNA Fingerprinting, Industrial IoT, Random Forest, Wilcoxon Rank Sum, ZigBee
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.