Comparison of Supervised and Unsupervised Learning for Detecting Anomalies in Network Traffic
Files
Date
2019-01-08
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Adversaries are always probing for vulnerable spots on the Internet so they can attack their target. By examining traffic at the firewall, we can look for anomalies that may represent these probes. To help select the right techniques we conduct comparisons of supervised and unsupervised machine learning on network flows to find sets of outliers flagged as potential threats. We apply Functional PCA and K-Means together versus Multilayer Perceptron on a real-world dataset of traffic prior to an NTP DDoS attack in January 2014; scanning activity was heightened during this pre-attack period. We partition data to evaluate detection powers of each technique and show that FPCA+Kmeans outperforms MLP. We also present a new variation of the circle plot for visualization of resulting outliers which we suggest excels at displaying multidimensional attributes of an individual IP's behavior over time. In small multiples, circle plots show a gestalt overview of traffic.
Description
Keywords
Cyber Threat Intelligence and Analytics, Software Technology, Circle Plots, FPCA, Machine Learning, Network Anomaly Detection
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.