AI-based Decision Support for Sustainable Operation of Electric Vehicle Charging Parks

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

868

Ending Page

Alternative Title

Abstract

The widespread adoption of electric vehicles makes investments in charging parks both immediate and necessary to lower range anxiety and allow longer trips. However, many charging park operators struggle with sustainable and profitable operation due to high fees on peak loads and volatile availability of renewable energy. Smart charging strategies may enable such operation, but the computational complexity of most available algorithms increases significantly with the number of charging points. Thus, operators of larger charging parks need information systems that provide real-time decision support without immense cost for computation. This paper presents a model that uses recent methods from the field of Reinforcement Learning. Our model is trained on a charging park simulation with realworld data on highway traffic and day ahead energy prices. The results indicate that Reinforcement Learning is a feasible solution to improve the sustainable and profitable operation of large electric vehicle charging parks.

Description

Keywords

Analytics and Decision Support for Green IS and Sustainability Applications, charging park, decision support, electric vehicle, reinforcement learning, smart charging

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.