Early Depression Detection with Transformer Models: Analyzing the Relationship between Linguistic and Psychology-Based Features

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3377

Ending Page

Alternative Title

Abstract

Clinical depression is a serious mental disorder that poses challenges for both personal and public health. Millions of people struggle with depression each year, but for many, the disorder goes undiagnosed or untreated. Over the last decade, early depression detection on social media emerged as an interdisciplinary research field. However, there is still a gap in detecting hesitant, depression-susceptible individuals with minimal direct depressive signals at an early stage. We, therefore, take up this open point and leverage posts from Reddit to fill the addressed gap. Our results demonstrate the potential of contemporary Transformer architectures in yielding promising predictive capabilities for mental health research. Furthermore, we investigate the model’s interpretability using a surrogate and a topic modeling approach. Based on our findings, we consider this work as a further step towards developing a better understanding of mental eHealth and hope that our results can support the development of future technologies.

Description

Keywords

Social Media and Healthcare Technology, early depression detection, liwc, mental health, transfer learning, transformer architectures

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.