Input Output HMM for Indoor Temperature Prediction in Occupancy Management Under User Preferences
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6811
Ending Page
Alternative Title
Abstract
In this paper, a probabilistic machine learning method is proposed to predict the indoor temperature of an office environment. An IOHMM-based model is developed to represent the office environment under different circumstances of heating sources. One year of time series data is observed and studied to learn the dynamics of the indoor thermal states. The uncertainty associated with the changing aspects of the indoor temperature and its dependence on the outdoor temperature is considered in the model development. The well-known Baum Welch and forward-backward algorithms are adapted to learn the model parameters. Then, the Viterbi algorithm is used to predict the maximum path of hidden states, leading to predicting the most likely future temperatures. A numerical application is presented to demonstrate the model development steps and the training and testing results. Finally, the model's performance is validated using leave-one-out cross-validation, which shows that the model has a prediction accuracy of about 78%.
Description
Keywords
IoB: Internet of Behaviors, building occupancy, data monitoring, hmm, indoor temperature prediction, office action
Citation
Extent
9
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.