Analogical Reasoning: An Algorithm Comparison for Natural Language Processing

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

There is a continual push to make Artificial Intelligence (AI) as human-like as possible; however, this is a difficult task. A significant limitation is the inability of AI to learn beyond its current comprehension. Analogical reasoning (AR), whereby learning by analogy occurs, has been proposed as one method to achieve this goal. Current AR models have their roots in symbolist, connectionist, or hybrid approaches which indicate how analogies are evaluated. No current studies have compared psychologically-inspired and natural language processing (NLP)-produced algorithms to one another; this study compares seven AR algorithms from both realms on multiple-choice word-based analogy problems. Assessment is based on selection of the correct answer, “correctness,” and their similarity score prediction compared to the “ideal” score, which is defined as the “goodness” metric. Psychologically-based models have an advantage based on our metrics; however, there is not a clear one-size-fits-all algorithm for all AR problems.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, analogy, artificial intelligence, natural language processing, reasoning, text mining

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.