Deep Domain Adaptation for Detecting Bomb Craters in Aerial Images
Files
Date
2023-01-03
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
825
Ending Page
Alternative Title
Abstract
The aftermath of air raids can still be seen for decades after the devastating events. Unexploded ordnance (UXO) is an immense danger to human life and the environment. Through the assessment of wartime images, experts can infer the occurrence of a dud. The current manual analysis process is expensive and time-consuming, thus automated detection of bomb craters by using deep learning is a promising way to improve the UXO disposal process. However, these methods require a large amount of manually labeled training data. This work leverages domain adaptation with moon surface images to address the problem of automated bomb crater detection with deep learning under the constraint of limited training data. This paper contributes to both academia and practice (1) by providing a solution approach for automated bomb crater detection with limited training data and (2) by demonstrating the usability and associated challenges of using synthetic images for domain adaptation.
Description
Keywords
Big Data and Analytics: Pathways to Maturity
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.