Data Integration and Predictive Analysis System for Disease Prophylaxis: Incorporating Dengue Fever Forecasts

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The goal of the Data Integration and Predictive Analysis System (IPAS) is to enable prediction, analysis, and response management for incidents of infectious diseases. IPAS collects and integrates comprehensive datasets of previous disease incidents and potential influencing factors to facilitate multivariate, predictive analysis of disease patterns, intensity, and timing. We have used the IPAS technology to generate successful forecasts for Influenza Like Illness (ILI). In this study, IPAS was expanded to forecast Dengue fever in the cities of San Juan, Puerto Rico and Iquitos, Peru. Data provided by the National Oceanic and Atmospheric Administration (NOAA) was processed and used to generate prediction models. Predictions were developed with modern machine learning algorithms, identifying the one-week and four-week forecast of Dengue incidences in each city. Prediction model results are presented along with the features of the IPAS system.

Description

Keywords

Data, Text and Web Mining for Business Analytics, data integration, dengue fever, disease forecasting, machine learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.