Vega: A Computer Vision Processing Enhancement Framework with Graph-based Acceleration

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The popularity of Computer Vision (CV) algorithms has been on the rise given their growing dependence on machine learning and deep neural networks. The resulting improvement in inference accuracy has revolutionized a number of fields. However, given that CV algorithms consist of many different stages, each having different computing characteristics, their execution is frequently irregular and inefficient, unable to leverage the full potential of the computing platform. Presently, supporting real-time video processing for high resolution images on edge systems involves a significant amount of programming effort and performance tuning. To overcome this challenge, we present Vega, a parallel graph-based framework that enables better utilization of multi-core edge computing platforms. Vega provides a highly flexible and user-friendly interface to execute a range of CV algorithms efficiently, leveraging multiple external libraries for performance. First, Vega maps independent stages of a CV algorithm to nodes in a pipeline graph. Next, it dynamically schedules nodes on a multi-core CPU using multi-threading. From our experimental results, our framework improves performance of all selected algorithms by at least 1.75x and up to 4.82x on the same platform. We analyze the impact of using our framework in terms of hardware utilization, frame processing latency and throughput.

Description

Keywords

Systems and Applications of Video Analytics, acceleration, computer vision, face detection, image processing

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.