Community Dynamics in Smart City Digital Twins: A Computer Vision-based Approach for Monitoring and Forecasting Collective Urban Hazard Exposure
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
1810
Ending Page
Alternative Title
Abstract
Urbanization and the growth of human population are leading to increased complexities in the interactions of citizens with public spaces, creating cities that must be more responsive to community dynamics. Despite the critical need for community-based city management, current decision-making approaches are often uninformed by the collective behavior of communities across time and in different locations. Here, we introduce a computer vision-based monitoring and forecasting approach for Smart City Digital Twins (SCDT) that enables integrating collective behavior into the spatiotemporal assessments of exposure to urban heat stress. Our results from a pilot case study in the city of Columbus, GA, demonstrate the significance of integrating community dynamics into monitoring and forecasting urban hazard exposure. This ongoing study highlights how SCDT can make community dynamics more accessible to and responsive by city managers.
Description
Keywords
Smart Building, Smart Community, and Smart City Digital Twins, computer vision, digital twins, smart cities, urban hazard exposure
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.