Community Dynamics in Smart City Digital Twins: A Computer Vision-based Approach for Monitoring and Forecasting Collective Urban Hazard Exposure

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1810

Ending Page

Alternative Title

Abstract

Urbanization and the growth of human population are leading to increased complexities in the interactions of citizens with public spaces, creating cities that must be more responsive to community dynamics. Despite the critical need for community-based city management, current decision-making approaches are often uninformed by the collective behavior of communities across time and in different locations. Here, we introduce a computer vision-based monitoring and forecasting approach for Smart City Digital Twins (SCDT) that enables integrating collective behavior into the spatiotemporal assessments of exposure to urban heat stress. Our results from a pilot case study in the city of Columbus, GA, demonstrate the significance of integrating community dynamics into monitoring and forecasting urban hazard exposure. This ongoing study highlights how SCDT can make community dynamics more accessible to and responsive by city managers.

Description

Keywords

Smart Building, Smart Community, and Smart City Digital Twins, computer vision, digital twins, smart cities, urban hazard exposure

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.