It’s All News to Me: The Remix

dc.contributor.authorBoon, Miriam
dc.date.accessioned2017-12-28T00:52:26Z
dc.date.available2017-12-28T00:52:26Z
dc.date.issued2018-01-03
dc.description.abstractThis paper examines the automation of editorial curation of online news and blog articles based on reader ratings. Websites usually provide no guidelines on how to evaluate and rate articles; the NewsTrust project explores how doing so could improve rating precision. Building on and expanding from existing, but incomplete, research, I describe simulations of article comparison to determine how many reader ratings are necessary to distinguish between articles.
dc.format.extent10 pages
dc.identifier.doi10.24251/HICSS.2018.214
dc.identifier.isbn978-0-9981331-1-9
dc.identifier.urihttp://hdl.handle.net/10125/50101
dc.language.isoeng
dc.relation.ispartofProceedings of the 51st Hawaii International Conference on System Sciences
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCollective Intelligence and Crowds
dc.subjectcrowdsourcing, user ratings, journalism
dc.titleIt’s All News to Me: The Remix
dc.typeConference Paper
dc.type.dcmiText

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
paper0214.pdf
Size:
664.05 KB
Format:
Adobe Portable Document Format