Comparing Machine Learning and Optimization Approaches for the N − k Interdiction Problem Considering Load Variability
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
2766
Ending Page
Alternative Title
Abstract
Power grids must be operated, protected, and maintained such that a small number of line failures will not result in significant load shedding. To identify problematic combinations of failures, we consider an N-k interdiction problem that seeks the set of k failed lines (out of N total lines) that result in the largest load shed. This is naturally formulated as a bilevel optimization problem with an upper level representing the attacker that selects line failures and a lower level modeling the defender's generator redispatch to minimize the load shedding. Compounding the difficulties inherent to the bilevel nature of interdiction problems, we consider a nonlinear AC power flow model that makes this problem intractable with traditional solution approaches. Furthermore, since the solutions found at a particular load condition may not generalize to other loading conditions, operators may need to quickly recompute these worst-case failures online to protect against them during operations. To address these challenges, we formulate and compare the performance of three simplified methods for solving the N-k interdiction problem: a state-of-the-art optimization approach based on a network-flow relaxation of the power flow equations and two newly developed machine learning algorithms that predict load sheds given the state of the network.
Description
Keywords
Resilient Networks, bilevel optimization, interdiction, neural networks, n − k
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.