Comparing Machine Learning and Optimization Approaches for the N − k Interdiction Problem Considering Load Variability

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2766

Ending Page

Alternative Title

Abstract

Power grids must be operated, protected, and maintained such that a small number of line failures will not result in significant load shedding. To identify problematic combinations of failures, we consider an N-k interdiction problem that seeks the set of k failed lines (out of N total lines) that result in the largest load shed. This is naturally formulated as a bilevel optimization problem with an upper level representing the attacker that selects line failures and a lower level modeling the defender's generator redispatch to minimize the load shedding. Compounding the difficulties inherent to the bilevel nature of interdiction problems, we consider a nonlinear AC power flow model that makes this problem intractable with traditional solution approaches. Furthermore, since the solutions found at a particular load condition may not generalize to other loading conditions, operators may need to quickly recompute these worst-case failures online to protect against them during operations. To address these challenges, we formulate and compare the performance of three simplified methods for solving the N-k interdiction problem: a state-of-the-art optimization approach based on a network-flow relaxation of the power flow equations and two newly developed machine learning algorithms that predict load sheds given the state of the network.

Description

Keywords

Resilient Networks, bilevel optimization, interdiction, neural networks, n − k

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.