Communication-free Voltage Regulation in Distribution Networks with Deep PV Penetration

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In this paper, we present a scheme of fully localized voltage regulation in distribution grids through reactive power compensation using photovoltaic (PV) inverters. We employ quasi-steady state representation of the effect of incremental changes in reactive power on voltage, in the form of discrete-time dynamics. We prove using this representation that nodal voltages may be regulated with guaranteed stability in the sense of Lyapunov without any node-to-node communication. We present properties of this communication-free control, such as guarantees on when it works and when it fails. Numerical studies based on realistic distribution network parameters are conducted to illustrate the performance and robustness of this proposed method with respect to changes of operating conditions and system parameters.

Description

Keywords

Resilient Networks, communication-free, distribution, photovoltaic inverters, reactive power, voltage regulation

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.