Beyond deep fakes: Conceptual framework, applications, and research agenda for neural rendering of realistic digital faces
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
4859
Ending Page
Alternative Title
Abstract
Neural rendering (NR) has emerged as a novel technology for the generation and animation of realistic digital human faces. NR is based on machine learning techniques such as generative adversarial networks and is used to infer human face features and their animation from large amounts of (video) training data. NR shot to prominence with the deep fake phenomenon, the malicious and unwanted use of someone’s face for deception or satire. In this paper we demonstrate that the potential uses of NR far outstrip its use for deep fakes. We contrast NR approaches with traditional computer graphics approaches, discuss typical types of NR applications in digital face generation, and derive a conceptual framework for both guiding the design of digital characters, and for classifying existing NR use cases. We conclude with research ideas for studying the potential applications and implications of NR-based digital characters.
Description
Keywords
Augmented Intelligence, deep fakes, digital humans, hci, neural rendering
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.