Learn or Earn? - Intelligent Task Recommendation for Competitive Crowdsourced Software Development

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Background: Competitive crowdsourced development encourages online software developers to register for tasks offered on the crowdsourcing platform and implement them in a competitive mode. As a large number of tasks are uploaded daily, the scenery of competition is changing continuously. Without appropriate decision support, online developers often make task decisions in an ad hoc and intuitive manner. Aims: To provide dynamic decision support for crowd developers to select the task that fit best to their personal learning versus earning objectives, taking into account the actual competitiveness situation. Method: We propose a recommendation system called EX2 ("EX-Square") that combines both explorative ("learn") and exploitative ("earn") search for tasks, based on a systematic analysis of workers preference patterns, technologies hotness, and the projection of winning chances. The implemented prototype allows dynamic recommendations that reflect task updates and competition dynamics at any given time. Results: Based on evaluation from 4007 tasks monitored over a period of 2 years, we show that EX2 can explore and adjust task recommendations corresponding to context changes, and individual learning preferences of workers. A survey was also conducted with 14 actual crowd workers, showing that intelligent decision support from EX2 is considered useful and valuable. Conclusions: With support from EX2, workers benefit from the tool from getting customized recommendations, and the platform provider gets a higher chance to better cover the breadth of technology needs in case recommendations are taken.

Description

Keywords

Frontiers in AI and Software Engineering, Crowdsourced Software Development Task Recommendations Learn Earn Machine Learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.