Understanding Topic Models in Context: A Mixed-Methods Approach to the Meaningful Analysis of Large Document Collections

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In recent years, we have witnessed an unprecedented proliferation of large document collections. This development has spawned the need for appropriate analytical means. In particular, to seize the thematic composition of large document collections, researchers increasingly draw on quantitative topic models. Among their most prominent representatives is the Latent Dirichlet Allocation (LDA). Yet, these models have significant drawbacks, e.g. the generated topics lack context and thus meaningfulness. Prior research has rarely addressed this limitation through the lens of mixed-methods research. We position our paper towards this gap by proposing a structured mixed-methods approach to the meaningful analysis of large document collections. Particularly, we draw on qualitative coding and quantitative hierarchical clustering to validate and enhance topic models through re-contextualization. To illustrate the proposed approach, we conduct a case study of the thematic composition of the AIS Senior Scholars' Basket of Journals.

Description

Keywords

Data, Text and Web Mining for Business Analytics, Topic Modelling, Mixed Methdos, LDA, Topic Coding, Textual Data

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.