A Highly Effective Deep Learning Based Escape Route Recognition Module for Autonomous Robots in Crisis and Emergency Situations

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Using convolutional neural networks we extend the work by Dugdale's group on socially relevant multi-agent systems in crisis and emergency situations by giving the artificial agent the ability to precisely recognize escape signs, doors and stairs for escape route planning. We build an efficient recognition module consisting of three blocks of a depth-wise separable convolutional layer, a max-pooling layer, and a batch-normalization layer before dense, dropout and classifying the image. A rigorous evaluation based on the MCIndoor20000 dataset shows excellent performance values (e.g. over 99.81 percent accuracy). In addition, our module architecture is 78 times smaller than the MCIndoor20000 benchmark - making it suitable for embedding in operational drones and robots.

Description

Keywords

ICT and Artificial Intelligence for Crisis and Emergency Management, Collaboration Systems and Technologies, convolutional neural networks, deep learning, emergency situations, escape route planning, multi-agent systems

Citation

Extent

8 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.