Using Autoencoders for Data-Driven Analysis in Internal Auditing
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
5748
Ending Page
Alternative Title
Abstract
New challenges in internal auditing are created as all areas of companies are digitalized. These challenges are forcing internal auditing to implement more and more data-driven procedures. Auditing is increasingly using artificial intelligence methods such as neural networks to overcome these challenges. Since in internal auditing labels are usually not available at the beginning of an audit engagement, unsupervised methods have to be used. We used autoencoders as an unsupervised method, which we evaluated for its use in auditing in a practical case study with an international automobile manufacturer. For the case study, two real-world, non-financial data sets from production-related processes were provided. The results of the case study show that the use of autoencoders can support auditors in the audit execution and in the audit planning process step to improve the quality of the internal audit engagement.
Description
Keywords
Data Analytics, Control, and Risk Management, auditing, autoencoder, deep learning, internal audit, unsupervised
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.