Using Autoencoders for Data-Driven Analysis in Internal Auditing

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

5748

Ending Page

Alternative Title

Abstract

New challenges in internal auditing are created as all areas of companies are digitalized. These challenges are forcing internal auditing to implement more and more data-driven procedures. Auditing is increasingly using artificial intelligence methods such as neural networks to overcome these challenges. Since in internal auditing labels are usually not available at the beginning of an audit engagement, unsupervised methods have to be used. We used autoencoders as an unsupervised method, which we evaluated for its use in auditing in a practical case study with an international automobile manufacturer. For the case study, two real-world, non-financial data sets from production-related processes were provided. The results of the case study show that the use of autoencoders can support auditors in the audit execution and in the audit planning process step to improve the quality of the internal audit engagement.

Description

Keywords

Data Analytics, Control, and Risk Management, auditing, autoencoder, deep learning, internal audit, unsupervised

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.