Demand Forecasting Intermittent and Lumpy Time Series: Comparing Statistical, Machine Learning and Deep Learning Methods
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
1425
Ending Page
Alternative Title
Abstract
Forecasting intermittent and lumpy demand is challenging. Demand occurs only sporadically and, when it does, it can vary considerably. Forecast errors are costly, resulting in obsolescent stock or unmet demand. Methods from statistics, machine learning and deep learning have been used to predict such demand patterns. Traditional accuracy metrics are often employed to evaluate the forecasts, however these come with major drawbacks such as not taking horizontal and vertical shifts over the forecasting horizon into account, or indeed stock-keeping or opportunity costs. This results in a disadvantageous selection of methods in the context of intermittent and lumpy demand forecasts. In our study, we compare methods from statistics, machine learning and deep learning by applying a novel metric called Stock-keeping-oriented Prediction Error Costs (SPEC), which overcomes the drawbacks associated with traditional metrics. Taking the SPEC metric into account, the Croston algorithm achieves the best result, just ahead of a Long Short-Term Memory Neural Network.
Description
Keywords
Intelligent Decision Support for Logistics and Supply Chain Management, demand forecasting, intemittent, lumpy, spec, deep learning
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.