Building Synthetic Power Transmission Networks of Many Voltage Levels, Spanning Multiple Areas

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Synthetic power grids, that is, test cases designed to match realistic structural and statistical characteristics of actual grids, are useful for research, development, and demonstration of innovations, since the cases are fictitious and thus free from data confidentiality issues. Building on previous work, this paper addresses a couple of related problems in the transmission network synthesis process. These issues appear as created cases become larger and involve multiple areas and overlapping nominal voltage levels. A fast, scalable hierarchical clustering is designed to assign voltage levels to substations considering the needs of the system, the specific constraints of the area, and smooth interconnections between neighboring areas with different voltage levels. A line topology generation framework is considered that is appropriate for many networks of different voltage levels, constructed together for a useful, realistic grid. These methods are demonstrated in a new 2000 bus test case, validated and publicly released.

Description

Keywords

Resilient Networks, Power system analysis, Power transmission systems, Synthetic power grids

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.