Data Stream Models for Predicting Adverse Events in a War Theater

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Predicting adverse events in a war theater has been an active area of research. Recent studies used machine learning methods to predict adverse events utilizing infrastructure development spending data as input variables. The goals of these studies were to find correlation and disclose the main factors between adverse events and human-social-infrastructure development projects, and reduce the occurrence of the adverse events. The predictions still have large errors compared with the real values using the existing methods. The reason could be that some significant variables are removed to comply with constraints in a soft computing model such as neural networks, fuzzy inference systems (FIS) and adaptive neuro-fuzzy inference systems (ANFIS) that work well with a smaller number of variables. In this paper, a data stream approach using three data stream regression algorithms, AMRules, TargetMean and FIMTDD, is proposed to predict the adverse events so that much more input variables could be included. The results show that the data stream methods generate better results than machine learning methods used in the previous studies, thus helping us better understand the relationship between infrastructure development and adverse events. In addition the data stream methods also outperform the traditional linear regression model. An important advantage in using data stream methods is the ability to create and apply predictive models with a relatively small amount of memory and time. Finally, the use of data stream methods provides an additional advantage by allowing the user to observe error distribution over time for more accurate assessment of the performance of the resulting models.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, Decision Analytics, Mobile Services, and Service Science, Active War Theater, Adverse Events Prediction, Data Stream Models

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.