Influencing Operational Policing Strategy by Predictive Service Analytics

Date
2018-01-03
Authors
Jackson, Lisa
Stoneman, Melanie-Jane
Callaghan, Heather
Zhang, Hanjing
Latsou, Christina
Dunnett, Sarah
Mao, Lei
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Everyday there are growing pressures to ensure that services are delivered efficiently, with high levels of quality and with acceptability of regulatory standards. For the Police Force, their service requirement is to the public, with the police officer presence being the most visible product of this criminal justice provision. Using historical data from over 10 years of operation, this research demonstrates the benefits of using data mining methods for knowledge discovery in regards to the crime and incident related elements which impact on the Police Force service provision. In the UK, a Force operates over a designated region (macro-level), which is further subdivided into Beats (micro-level). This research also demonstrates differences between the outputs of micro-level and macro-level analytics, where the lower level analysis enables adaptation of the operational Policing strategy. The evidence base provided through the analysis supports decisions regarding further investigations into the capability of flexible neighbourhood policing practices; alongside wider operations i.e. optimal officer training times.
Description
Keywords
Service Analytics, Data analytics, Micro-level analysis, Policing
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.