A Scorecard Method for Detecting Depression in Social Media Users

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

A Scorecard Method for Detecting Depression in Social Media Users Netsanet Tefera Lina Zhou University of Maryland, Baltimore County {netsa2, zhoul}@umbc.edu Abstract Depression is one of the most prevalent mental health disorders today. Depression has become the leading causes of disability and premature mortality partly due to a lack of effective methods for early detection. This research explores how social media can be used as a tool to detect the level of depression in its users by proposing a scorecard method based on their user profiles. In the proposed method, depression is measured by a selected set of key dimensions along with their specific indicators, which are weighted based on their importance for signaling depression in the literature. To evaluate the scorecard method, we compared three types of social media users: users who committed suicide due to depression, users who were likely suffering from depression, and users who were unlikely suffering from depression. The empirical results demonstrate the effectiveness of the scorecard method in detecting depression.

Description

Keywords

Technology Mediated Collaborations in Healthcare and Wellness Management, 0

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.