Cross-Site Scripting (XSS) Detection Integrating Evidences in Multiple Stages

Date
2019-01-08
Authors
Zhang, Jingchi
Jou, Yu-Tsern
Li, Xiangyang
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
As Cross-Site Scripting (XSS) remains one of the top web security risks, people keep exploring ways to detect such attacks efficiently. So far, existing solutions only focus on the payload in a web request or a response, a single stage of a web transaction. This work proposes a new approach that integrates evidences from both a web request and its response in order to better characterize XSS attacks and separate them from normal web transactions. We first collect complete payloads of XSS and normal web transactions from two databases and extract features from them using the Word2vec technique. Next, we train two Gaussian mixture models (GMM) with these features, one for XSS transaction and one for normal web transactions. These two models can generate two probability scores for a new web transaction, which indicate how similar this web transaction is to XSS and normal traffics respectively. Finally, we put together these two GMM models in classification by combining these two probabilities to further improve detection accuracy.
Description
Keywords
Cyber Threat Intelligence and Analytics, Software Technology, Attack Detection, Cross-Site Scripting, Gaussian Mixture Model, Web Attack
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.