Systematic Framework for Integration of Weather Data into Prediction Models for the Electric Grid Outage and Asset Management Applications

Date
2018-01-03
Authors
Kezunovic, Mladen
Obradovic, Zoran
Djokic, Tatjana
Roychoudhury, Shoumik
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This paper describes a Weather Impact Model (WIM) capable of serving a variety of predictive applications ranging from real-time operation and day-ahead operation planning, to asset and outage management. The proposed model is capable of combining various weather parameters into different weather impact features of interest to a specific application. This work focuses on the development of a universal weather impacts model based on the logistic regression embedded in a Geographic Information System (GIS). It is capable of merging massive data sets from historical outage and weather data, to real-time weather forecast and network monitoring measurements, into a feature known as weather hazard probability. The examples of the outage and asset management applications are used to illustrate the model capabilities.
Description
Keywords
Resilient Networks, Weather predictions; outage management; asset management; data analytics
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.