Crowdsourcing Data Science: A Qualitative Analysis of Organizations’ Usage of Kaggle Competitions

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In light of the ongoing digitization, companies accumulate data, which they want to transform into value. However, data scientists are rare and organizations are struggling to acquire talents. At the same time, individuals who are interested in machine learning are participating in competitions on data science internet platforms. To investigate if companies can tackle their data science challenges by hosting data science competitions on internet platforms, we conducted ten interviews with data scientists. While there are various perceived benefits, such as discussing with participants and learning new, state of the art approaches, these competitions can only cover a fraction of tasks that typically occur during data science projects. We identified 12 factors within three categories that influence an organization’s perceived success when hosting a data science competition.

Description

Keywords

Collaboration for Data Science, crowdsourcing, data science, organization, success

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.