Identifying Vaccine Hesitant Communities on Twitter and their Geolocations: A Network Approach

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3964

Ending Page

Alternative Title

Abstract

Vaccine misinformation online may contribute to the increase of anti-vaccine sentiment and vaccine-hesitant behaviors. Social network data was used to identify Twitter vaccine influencers, their online twitter communities, and their geolocations to determine pro-vaccine and vaccine-hesitant online communities. We explored 139,433 tweets and identified 420 vaccine Twitter influencers—opinion leaders and assessed 13,487 of their tweets and 7,731 of their connections. Semantic network analysis was employed to determine twitter conversation themes. Results suggest that locating social media influencers is an efficient way to identify and target vaccine-hesitant communities online. We discuss the implications of using this process for public health education and disease management.

Description

Keywords

Socia Media and Healthcare Technology, social networks, twitter, vaccine hesitancy

Citation

Extent

6 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.