Identifying Vaccine Hesitant Communities on Twitter and their Geolocations: A Network Approach

Date
2021-01-05
Authors
Ruiz, Jeanette
Featherstone , Jade D.
Barnett, George A.
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3964
Ending Page
Alternative Title
Abstract
Vaccine misinformation online may contribute to the increase of anti-vaccine sentiment and vaccine-hesitant behaviors. Social network data was used to identify Twitter vaccine influencers, their online twitter communities, and their geolocations to determine pro-vaccine and vaccine-hesitant online communities. We explored 139,433 tweets and identified 420 vaccine Twitter influencers—opinion leaders and assessed 13,487 of their tweets and 7,731 of their connections. Semantic network analysis was employed to determine twitter conversation themes. Results suggest that locating social media influencers is an efficient way to identify and target vaccine-hesitant communities online. We discuss the implications of using this process for public health education and disease management.
Description
Keywords
Socia Media and Healthcare Technology, social networks, twitter, vaccine hesitancy
Citation
Extent
6 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.