Inferring the Relationship between Anxiety and Extraversion from Tweets during COVID19 – A Linguistic Analytics Approach

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2689

Ending Page

Alternative Title

Abstract

We investigate the longitudinal relationship between extraversion and experienced state anxiety in a cohort of Twitter users in New York using a linguistic analytics approach. We find that before COVID-19 was declared a pandemic, highly extraverted individuals experienced lower state anxiety compared to more introverted individuals. This is in line with previous literature. However, there seem to be no significant differences between individuals after the pandemic announcement, which provides evidence that COVID-19 is affecting individuals regardless of their extraversion trait disposition. Finally, a longitudinal examination of the present data shows that extraversion seems to matter more greatly in the early days of the crisis and towards the end of our examined time range. Throughout the crisis, state anxiety did not seem to vary much between individuals with different extraversion dispositions.

Description

Keywords

Data Analytics, Data Mining and Machine Learning for Social Media, anxiety, covid-19, extraversion, linguistic analysis, machine learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.