Knowledge Discovery in Smart City Digital Twins
Files
Date
2020-01-07
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Despite the abundance of available urban data and the potential for reaching enhanced capabilities in the decision-making and management of city infrastructure, current data-driven approaches to knowledge discovery from city data often lack the capacity for collective data exploitation. Loosely defined data interpretation components, or disciplinary isolated interpretations of specific datasets make it easy to overlook necessary domain expertise, often resulting in speculative decision-making. Smart City Digital Twins are designed to overcome this barrier by integrating a more holistic analytics and visualization approach into the real-time knowledge discovery process from heterogeneous city data. Here, we present a spatiotemporal knowledge discovery framework for the collective exploitation of city data in smart city digital twins that incorporates both social and sensor data, and enables insights from human cognition. This is an initial step towards leveraging heterogeneous city data for digital twin-based decision-making.
Description
Keywords
Smart City Digital Twins, digital twins, internet of things (iot), knowledge discovery, smart cities, urban infrastructure
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.