Driving Sustainably – The Influence of IoT-based Eco-Feedback on Driving Behavior

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

One starting point to reduce harmful greenhouse gas emissions is driving behavior. Previous studies have already shown that eco-feedback leads to reduced fuel consumption. However, less has been done to investigate how driving behavior is affected by eco-feedback. Yet, understanding driving behavior is important to target personalized recommendations towards re-duced fuel consumption. In this paper, we investigate a real-world data set from an IoT-based smart vehicle service. We first extract seven distinct factors that characterize driving behavior from data of 5,676 users. Second, we derive initial hypotheses on how eco-feedback may affect these factors. Third, we test these hypotheses with data of another 495 users receiving eco-feedback. Results suggest that eco-feedback, for instance, reduces hard acceleration maneuvers while interestingly speed is not affected. Our contribution extends the understanding of measuring driving behavior using IoT-based data. Furthermore, we contribute to a better understanding of the effect of eco-feedback on driving behavior.

Description

Keywords

Analytics and Decision Support for Green IS and Sustainability Applications, driving behavior, eco-feedback, factor model, iot, real-world data

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.