Please use this identifier to cite or link to this item:
http://hdl.handle.net/10125/60031
Impacts of Machine Learning on Work
Item Summary
Title: | Impacts of Machine Learning on Work |
Authors: | Crowston, Kevin Bolici, Francesco |
Keywords: | Digital Innovation Organizational Systems and Technology artificial intelligence, automation, machine learning, work design |
Date Issued: | 08 Jan 2019 |
Abstract: | The increased pervasiveness of technological advancements in automation makes it urgent to address the question of how work is changing in response. Focusing on applications of machine learning (ML) that automate information tasks, we present a simple framework for identifying the impacts of an automated system on a task. From an analysis of popular press articles about ML, we develop 3 patterns for the use of ML—decision support, blended decision making and complete automation—with implications for the kinds of tasks and systems. We further consider how automation of one task might have implications for other interdependent tasks. Our main conclusion is that designers have a range of options for systems and that automation of tasks is not the same as automation of work. |
Pages/Duration: | 10 pages |
URI: | http://hdl.handle.net/10125/60031 |
ISBN: | 978-0-9981331-2-6 |
DOI: | 10.24251/HICSS.2019.719 |
Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ |
Appears in Collections: |
Digital Innovation |
Please email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.
This item is licensed under a Creative Commons License