Semantic Modeling of Outdoor Scenes for the Creation of Virtual Environments and Simulations

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Efforts from both academia and industry have adopted photogrammetric techniques to generate visually compelling 3D models for the creation of virtual environments and simulations. However, such generated meshes do not contain semantic information for distinguishing between objects. To allow both user- and system-level interaction with the meshes, and enhance the visual acuity of the scene, classifying the generated point clouds and associated meshes is a necessary step. This paper presents a point cloud/mesh classification and segmentation framework. The proposed framework provides a novel way of extracting object information – i.e., individual tree locations and related features while considering the data quality issues presented in a photogrammetric-generated point cloud. A case study has been conducted using data that were collected at the University of Southern California to evaluate the proposed framework.

Description

Keywords

Smart City Digital Twins, Decision Analytics, Mobile Services, and Service Science, Point cloud segmentation; Individual tree locations identification; Point cloud feature extraction; Mesh segmentation; Creation of virtual environments and simulations

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.