Extracting Causal Claims from Information Systems Papers with Natural Language Processing for Theory Ontology Learning

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The number of scientific papers published each year is growing exponentially. How can computational tools support scientists to better understand and process this data? This paper presents a software-prototype that automatically extracts causes, effects, signs, moderators, mediators, conditions, and interaction signs from propositions and hypotheses of full-text scientific papers. This prototype uses natural language processing methods and a set of linguistic rules for causal information extraction. The prototype is evaluated on a manually annotated corpus of 270 Information Systems papers containing 723 hypotheses and propositions from the AIS basket of eight. F1-results for the detection and extraction of different causal variables range between 0.71 and 0.90. The presented automatic causal theory extraction allows for the analysis of scientific papers based on a theory ontology and therefore contributes to the creation and comparison of inter-nomological networks.

Description

Keywords

Theory and Information Systems, Causal Relationship Extraction, Causality, Natural Language Processing, Theory, Theory Ontology Learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.