Riskrank to Predict Systemic Banking Crises With Common Exposures

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Systemic risk has remained at the nexus of macro-financial research and policymaking in most parts of the world. Much of the attention has focused on understanding implication of the interconnectedness of financial markets. Instead of focusing only on networks, we use and test the utility of network structures in a novel way. We use RiskRank as a framework to test the use of networks of financial systems, and particularly focus on testing the utility of the network dimension of common exposures (funding composition and portfolio overlap). RiskRank provides an ideal playground for testing the extent to which direct and common exposures perform in capturing transmission of financial crises. The results in this paper highlight the importance of common exposures. We show that funding and portfolio composition overlap are significant channels of contagion and should be accounted for when measuring systemic risk.

Description

Keywords

Machine Learning and Network Analytics in Finance, early-warning models, macroprudential oversight, financial networks, RiskRank, systemic risk

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.