The Technical, Socio-Economic, and Ethical Aspects of AI

Permanent URI for this collectionhttps://hdl.handle.net/10125/107540

Browse

Recent Submissions

Now showing 1 - 3 of 3
  • Item type: Item ,
    Dubito Ergo Sum: Exploring AI Ethics
    (2024-01-03) Dörfler, Viktor; Cuthbert, Giles
    We paraphrase Descartes’ famous dictum in the area of AI ethics where the “I doubt and therefore I am” is suggested as a necessary aspect of morality. Therefore AI, which cannot doubt itself, cannot possess moral agency. Of course, this is not the end of the story. We explore various aspects of the human mind that substantially differ from AI, which includes the sensory grounding of our knowing, the act of understanding, and the significance of being able to doubt ourselves. The foundation of our argument is the discipline of ethics, one of the oldest and largest knowledge projects of human history, yet, we seem only to be beginning to get a grasp of it. After a couple of thousand years of studying the ethics of humans, we (humans) arrived at a point where moral psychology suggests that our moral decisions are intuitive, and all the models from ethics become relevant only when we explain ourselves. This recognition has a major impact on what and how we can do regarding AI ethics. We do not offer a solution, we explore some ideas and leave the problem open, but we hope somewhat better understood than before our study.
  • Item type: Item ,
    From Large Language Models to Knowledge Graphs for Biomarker Discovery in Cancer
    (2024-01-03) Karim, Rezaul; Comet, Lina Molinas; Shajalal , Md; De Perthuis, Paola; Rebholz-Schuhmann, Dietrich; Decker, Stefan
    Domain experts often rely on up-to-date knowledge for apprehending and disseminating specific biological processes that help them design strategies to develop prevention and therapeutic decision-making. A challenging scenario for artificial intelligence (AI) is using biomedical data (e.g., texts, imaging, omics, and clinical) to provide diagnosis and treatment recommendations for cancerous conditions. Data and knowledge about cancer, drugs, genes, proteins, and their mechanism is spread across structured (knowledge bases (KBs)) and unstructured (e.g., scientific articles) sources. A large-scale knowledge graph (KG) can be constructed by integrating these data, followed by extracting facts about semantically interrelated entities and relations. Such KGs not only allow exploration and question answering (QA) but also allow domain experts to deduce new knowledge. However, exploring and querying large-scale KGs is tedious for non-domain users due to a lack of understanding of the underlying data assets and semantic technologies. In this paper, we develop a domain KG to leverage cancer-specific biomarker discovery and interactive QA. For this, a domain ontology called OncoNet Ontology (ONO) is developed to enable semantic reasoning for the validation of gene-disease relations. The KG is then enriched by harmonizing the ONO, metadata, controlled vocabularies, and biomedical concepts from scientific articles by employing BioBERT- and SciBERT-based information extractors. Further, since the biomedical domain is evolving, where new findings often replace old ones, without employing up-to-date findings, there is a high chance an AI system exhibits concept drift while providing diagnosis and treatment. Therefore, we finetuned the KG using large language models (LLMs) based on more recent articles and KBs.
  • Item type: Item ,
    Introduction to the Minitrack on The Technical, Socio-Economic, and Ethical Aspects of AI
    (2024-01-03) Li, Yibai; Deng, Xuefei; Wang, Yichuan