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Abstract

We investigate how provisioning models affect bank regulation. We study an ac-
curacy vs. timeliness trade-off between an incurred loss model (IL) and a current
expected credit loss model (CECL). Relative to IL, CECL improves effi ciency by en-
abling timely intervention to curb ineffi cient ex post asset-substitution even though
the imprecise information of CECL entails false alarms. However, from a real effects
perspective, our analysis uncovers a potential cost of CECL: banks respond to timely
intervention by originating riskier loans so that timely intervention induces timelier
risk-taking. By appropriately tailoring regulatory capital to information about credit
losses, the regulator can improve the effi ciency of CECL. In particular, we show that
regulatory capital under CECL would be looser when early estimates of credit losses
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1 Introduction

The recent adoption of the Current Expected Credit Loss standard (CECL) for the esti-

mation of credit losses for loans and debt securities is arguably one of the most sweeping

accounting changes to impact banks and financial institutions (Financial Accounting Stan-

dards Board (FASB), 2019). Under CECL, banks would replace an “incurred loss”model

with an “expected loss”model. A key difference between the two provisioning models is that

under the incurred loss model, banks “delay recognition of credit losses until they have been

incurred,”whereas under the expected loss model, banks must recognize “the full amount

of credit losses that are expected” as soon as loans are originated (FASB, 2016). While

standard setters argue that the new standard would result in “more timely and relevant

information,”others have countered that it “could actually produce negative economic con-

sequences” (Quaadman, 2019). Most notably, banks are concerned that the forecasts of

future credit losses are often unreliable and false loss recognition may lower bank capital

ratios and thereby “curtail credit availability, make credit losses worse during a recession

and heighten volatility of bank earnings”(Maurer, 2020).1 To shed light on this important

debate, we develop an economic model to study the trade—offs in moving from an “incurred

loss”model to an “expected loss”model.

We model a representative bank that is subject to shareholder—debtholder conflicts. The

bank’s shareholders have incentives to take excessive risk by either: 1) increasing the ex

1The COVID-19 crisis of 2020 is a case in point. There have been concerns that application of CECL
during the crisis would severely erode banks’capital so that banks may curtail lending. In response, the
CARES Act recently signed by President Trump on March 27, 2020 gives banks the option to delay imple-
menting the new credit-loss standard until December 31, 2020, or until the end of the coronavirus national
emergency, whichever comes first.
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ante risk of the bank’s loan portfolio by exerting less effort to screen borrowers, and/or 2)

engaging in ex post asset substitution/risk-shifting to replace low-risk loans with high-risk

ones. To discipline excessive risk-taking, a banking regulator imposes capital requirements.

Importantly, the bank’s level of capital depends on the provisioning model the bank uses to

measure credit losses. Under an incurred loss model, the bank does not provision for credit

losses until they are realized, whereas under the expected loss model, the bank relies on early

forecasts of default risk to provision for credit losses upon loan origination. Provisioning for

credit losses erodes the bank’s level of regulatory capital, which, in turn, triggers regulatory

intervention. The regulator then decides whether to take any regulatory action such as

liquidating or restructuring the bank’s loan portfolio.

We first study a benchmark setting in which the bank’s ex ante choices of loan risk are

kept fixed. We show that timely provisioning for loan losses under the expected loss model is

always beneficial. Whenever the bank recognizes a loan loss in the interim, thereby eroding

its regulatory capital, the regulator intervenes early and prevents the bank from engaging

in ineffi cient asset substitution. More importantly, we show that the benefit of timely loss

recognition always dominates the false alarm costs caused by the imprecise information in-

herent in the expected loss model. The reason is that a rational and benevolent regulator

fully internalizes the false-alarm costs and acts optimally on the timely but imprecise infor-

mation. In other words, our analysis shows that—as long as banks’ex ante risk choices are

fixed—the accuracy-timeliness trade-off is one-sided as false alarm costs are not suffi cient to

overturn the benefits of timeliness offered by expected loss models.

However, once we allow for endogenous loan risk choices, early intervention is a double-

edged sword. While timely intervention curbs ex post asset substitution, it induces the bank
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to originate riskier loans ex ante. Originating riskier loans results in a surplus loss that may

outweigh the benefits of timely loss recognition, thereby potentially making the expected

loss model inferior to the incurred loss model. To understand this risk-aggravating effect of

early intervention, note that under the incurred loss model, the bank prefers to defer taking

excessive amounts of risk until it receives more precise information about the performance

of its loan portfolio. However, under the expected loss model, the option value of waiting

is constrained by regulatory intervention that preempts the bank from asset-substituting in

the interim. Anticipating this, the bank responds by originating riskier loans ex ante so that

timely intervention triggers even timelier risk-taking by the bank.

The overall effi ciency of the expected loss model therefore depends on the trade-off be-

tween its ex post benefit of facilitating timely intervention and its ex ante cost of inducing

excessive risk-taking. Interestingly, in incorporating the real effects of accounting measure-

ments, more timely but less precise information under the expected loss model is no longer

always socially desirable. When banks are heavily leveraged, the expected loss model be-

comes inferior. But when banks’leverage is not too high, the effi ciency of the expected loss

model hinges on its precision in estimating early loan losses. More precisely, the expected loss

model is superior if interim signal generated by the model is suffi ciently informative so that

the false alarm costs of the expected loss model are not too high. Stated differently, the false

alarm arguments made against expected loss models, i.e., the accuracy-timeliness trade-off,

come to life only when we take into account the real effects of accounting measurements.

A policy implication of our findings is that changing the methodology for estimating

credit losses for loans requires the banking regulator to simultaneously adjust capital ade-

quacy ratios. We show that by appropriately tailoring the bank’s regulatory capital ratio
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to information about credit losses, the regulator can improve the effi ciency of the expected

loss model. In particular, our model suggests that relative to regulatory capital under an in-

curred loss model, regulatory capital under an expected loss model would be looser when the

precision of estimating early credit losses is relatively high and/or when asset-substitution

incentives are not too severe.

Our paper contributes to the banking literature on loan loss provisioning. Given the

extensive size of this literature, we refer interested readers to two recent surveys by Beatty

and Liao (2014) and Acharya and Ryan (2016). Most papers in this literature focus on

empirically examining the effect of loan loss provisioning on banks’behavior. For instance,

Beatty and Liao (2011) find that delays in loan loss recognition make banks’lending more

procyclical.2 Bushman and Williams (2012) document that timely recognition of expected

future loan losses is associated with prudent risk-taking. Similarly, Bushman and Williams

(2015) find that delayed expected loan loss recognition is positively associated with banks’

vulnerability to stock market liquidity risk, downside tail risk of individual banks and code-

pendency of downside tail risk among banks. Akins, Dou, and Ng (2019) report that timely

loan loss recognition constrains corruption in bank lending and thus improves the quality of

loans. We develop an analytical framework of the impact of loan loss provisioning on banks’

risk-taking behavior and prudential regulation. In line with prior empirical evidence, we

find that timely recognition of loan losses helps to curb ineffi cient ex post asset-substitution.

However, our analysis also uncovers a potential cost of the timely loss recognition: it also

induces banks to originate riskier loans ex ante. An empirical implication of our result is

2More recently, Laux and Rauter (2017) empirically investigate whether accounting measurements affect
bank procyclicality.
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that in examining the impact of loan loss provisioning, researchers should classify banks’risk

decisions by the time they are undertaken (e.g., screening effort at loan origination versus

asset substitution after learning bad news).

Our paper is also related to the burgeoning theoretical literature that examines the role

of accounting measurements and disclosure in affecting financial stability and prudential

regulation (see Goldstein and Sapra (2014) for a recent survey). Allen and Carletti (2008),

Plantin, Sapra, and Shin (2008), Burkhart and Strausz (2009), and Mahieux (2019) exam-

ine the impact of mark-to-market accounting on bank risk and financial stability. Corona,

Nan, and Zhang (2019) examine the coordination role of stress-test disclosure in affecting

bank risk-taking. Gao and Jiang (2018), Zhang (2019), and Liang and Zhang (2019) study

the role of accounting measurements in stabilizing bank runs. Finally, our study is closely

related to several studies that also examine the use of accounting measurements in the pru-

dential regulation of banks. Heaton, Lucas, and McDonald (2010) examine the interaction

between mark-to-market accounting and capital requirements in affecting the social cost of

regulation. Corona, Nan, and Zhang (2014) examine the effect of accounting information

quality on the effi ciency of capital requirements and banks’ risk-taking incentives, taking

into account the competition among banks. Corona, Nan, and Zhang (2019) and Bertomeu,

Mahieux, and Sapra (2020) study the joint determination of optimal capital requirement

policy and accounting measurement rules in disciplining banks’risk-taking and stimulating

bank lending. Lu, Sapra, and Subramanian (2019) study the optimal use of mark-to-market

accounting in implementing capital requirements, in the presence of asymmetric information

and agency conflicts. However, unlike our study, neither loan loss provisioning nor its impact

on prudential regulation are examined in any of the aforementioned studies. We shed light
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Regulator sets capital
requirements. Bank
raises deposits D,
and chooses effort q
to screen borrowers.

Bank originates its loans.
Bank learns expected loss s1
and reports it according to
loan loss provisioning rule.
Regulator chooses intervention.
Bank makes asset-substituting
decision r.

Default risk s is realized.
Regulator chooses
intervention.

Loan payoffs π
are realized.

Figure 1: Timeline of the model

on how regulatory capital should be tailored to the loan loss estimation model. More im-

portantly, our analysis generates a new insight that relative to incurred loss models, optimal

capital requirements under expected loss models may be looser when the precision of interim

information are relatively high, and/or when the incentives to engage in ineffi cient asset

substitution are not too severe. Our results therefore call for better coordination between

banking regulators and accounting standard setters.

Section 2 describes our model. Section 3 provides an implementation of loan loss provi-

sioning in the context of our model. Section 4 analyzes the model. Section 5 concludes. An

Appendix contains the proofs of our results.

2 The Model

2.1 Timing of Events

We examine an environment that consists of a representative bank and a banking regulator.

Figure 1 summarizes the timing of events.

At t = 0, the bank is endowed with an amount of exogenous equity E. The regulator

chooses a capital ratio γ, defined as the equity-to-asset ratio for the bank. Given a fixed E,

choosing the capital ratio γ is equivalent to choosing the size A of the bank’s loan portfolio
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or equivalently the bank size where A ∈
[
E, Ā

]
.3Ā denotes the maximum bank size and is

chosen to be suffi ciently large. For a bank of size A > E, the bank borrows D = A−E from

depositors. We assume that deposits are fully insured and we normalize the risk-free deposit

rate to zero.

After raising deposits, the bank chooses a costly effort q to screen risky borrowers. The

screening effort affects the return of the loan portfolio as follows. The outcome of each loan

is binary: either the loan succeeds or it defaults. Absent any screening effort, i.e., q = 0,

the bank always generates a high-risk loan that returns β with probability τ ∈ (0, 1) and 0

with probability 1 − τ . To improve the performance of the loan portfolio, the bank exerts

screening effort q at a cost of C (q) where the cost function C (.) satisfies the standard

properties: C (0) = 0, C (1) = ∞, C ′ (0) = 0, C ′ (1) = ∞, and C ′′ > 0. Conditional on a

choice of q > 0, the bank receives the high-risk loan with probability 1− q and the low-risk

loan with probability q. The low-risk loan returns α with probability s and 0 with probability

1 − s. The random variable s represents the (inverse) default risk of the low-risk loan and

has a distribution H (.) and a density h (.) with full support on [τ , 1] so that the low-risk

loan always has a lower default risk than the high-risk loan. This assumption guarantees

that the bank’s screening effort q reduces the default risk of the loan portfolio by decreasing

the likelihood of high-risk loans in its loan portfolio. To reflect the risk-return trade-off, we

assume that β > α > 1 such that the bank demands a higher interest rate on the high-risk

3We consider the case that the regulator uses a simple leverage ratio to regulate capital. This is consistent
with the newly proposed Basel III framework. In particular, Section V of Basel Committee (2010) provides
a discussion of the use of leverage ratios in Basel III, that “the Committee agreed to introduce a simple,
transparent, non-risk based leverage ratio that is calibrated to act as a credible supplementary measure
to the risk based capital requirements.”However, we do not explicitly study the exact implementation of
the regulatory leverage requirement, which, in reality, could be achieved via minimum capital requirements,
comprehensive capital analysis and review (CCAR), and other regulatory intervention actions.
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loan.

At t = 1, after screening borrowers, the bank originates and invests A in its loans. The

type of the loan is thereafter realized and privately observed by the bank. Conditional on

originating a low-risk loan, the bank receives some early and potentially imprecise informa-

tion s1 regarding the default risk s. The random variable s̃1 has a distribution G (.) and a

density g (.) with full support on [τ , 1]. We interpret s1 as new information about a non-

incurred loan value change that arrives at the intermediate date, and reflects the change in

expectation of future loan losses. The arrival of such information affects the bank’s assess-

ment of the default likelihood and future loan losses. Formally, we model the bank’s updated

assessment of loan performance using the posterior distribution of s given s1, denoted by

F (s|s1) with a density f (s|s1). We assume that larger values of s1 improve the bank’s assess-

ment of s in the sense of first-order stochastic dominance, i.e., ∂F (s|s1)
∂s1

< 0. Throughout our

analysis, we use a general distribution for s and s1. However, to illustrate our main results,

following Corona, Nan, and Zhang (2019), we adopt the following linear-uniform structure:

s̃ = ws̃1 + (1− w) s̃2, (1)

where s̃1 and s̃2 are i.i.d. random variables that are both uniformly distributed in the interval

[τ , 1]. The state s̃ is a weighted average of s̃1 and s̃2 where the weight on s̃1 is w ∈ [0, 1].

The first component of s̃1, is realized and observed by the bank at t = 1 while the second

component s̃2 is not realized until t = 2. In other words, observing s1 at t = 1 reveals some

partial information about s. The weight w thus captures the precision of s1 in forecasting s.

At w = 0, observing s1 reveals no information regarding s, whereas at w = 1, observing s1
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perfectly reveals s.

An important goal of our model is to study the economic consequences of timely loan

loss provisioning under an expected loss model such as CECL. We study two provisioning

models. We refer to the model in which the bank does not provision for loan losses until

the default risk s is realized as an “incurred loss model (IL)”and the model in which the

bank additionally uses s1 to provision for loan losses early as an “expected loss model (EL).”

Relative to the incurred loss model, the expected loss model thus recognizes a more timely

but potentially imprecise estimate of expected loan losses.

The timely recognition of loan losses facilitates the early regulatory intervention in the

bank. In particular, under the incurred loss model, because the bank delays the recognition of

loan losses, its capital ratio stays the same as t = 0, thus providing no basis for the regulator

to intervene. In contrast, under the expected loss model, timely recognition of loan losses at

origination leads to a write-down of the bank’s loan, which, in turn, lowers its capital ratio.

The erosion of the capital ratio, in turn, prompts regulatory intervention.4 In practice, a

regulator has broad discretion in terms of what actions to take ranging from being passive,

thereby allowing the bank to continue its operations to a reorganization, partial asset sale,

a reduction in the scope of the bank or even liquidation. For simplicity, we focus on two

possible actions: continuation or liquidation.5 We assume the regulator learns the type of the

4In Section 3, we provide a detailed account on the implementation of loan loss provisioning and its
impact on a bank’s balance sheet and its capital ratio. In particular, we illustrate how provisioning for loan
losses triggers regulatory intervention under the incurred loss vs. the expected loss models.

5The structure of ex-post intervention actions (continuation vs. liquidation) that our model adopts
follows directly from the continue-stop modeling structure (“C”vs. “S”) developed in the seminal work of
Dewatripont and Tirole (1994). For convenience, we refer to the action that reduces the risk of the bank’s
loans as “liquidation.”Note, however, that this action is not only limited to liquidating the bank’s loans, but
may also be broadly interpreted as any action that makes the terminal cash flows of the loans less volatile
and more deterministic, for instance, restructuring the bank’s loan portfolio, etc.
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loan at the intervention stage. Given the information s1, the regulator optimally liquidates

the bank’s loan if the expected payoffs from liquidation exceed the expected payoffs from

continuation. If a unit of low-risk loan is liquidated, the regulator recovers the original

investment of 1 whereas if a unit of high-risk loan is liquidated, the regulator recovers Lβ.

In case of continuation at t = 1, based on its updated assessment of the loan performance

F (s|s1), the bank may increase the risk of the loan portfolio by engaging in asset substitution

r ∈ {0, 1}. The variable r = 0 implies no asset substitution so that the bank does not change

its original loan portfolio whereas the variable r = 1 implies that the bank changes its original

loan portfolio by substituting the low-risk loans in the loan portfolio with high-risk loans.

That is, conditional on r = 1, the bank always receives the high-risk loan.

At t = 2, conditional on continuation of the bank at t = 1, the default risk s is realized

and observed by the bank. Since the default risk is realized, the bank reports s, regardless of

whether the bank follows the incurred loss model or the expected loss model. The recognition

of loan losses reduces the bank’s capital ratio, in which case the regulator decides, again,

whether to intervene.

At t = 3, the terminal payoffs of the loans are realized. The per-unit payoff π of the

loan portfolio is as follows. If the loan is low-risk and is liquidated, π = 1 but if the loan is

continued, π = α with probability s and π = 0 with probability 1−s. If the loan is high-risk

and is liquidated, π = Lβ whereas in case of continuation, π = β with probability τ and

π = 0 with probability 1 − τ . The regulator compensates depositors if the bank fails, i.e.,

π < D, with a lump sum payment which we assume is financed via a frictionless ex ante tax.
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2.2 Assumptions

To create a demand for prudential regulation, we impose the following assumptions (A1-A4)

throughout our entire analysis:

Assumption 1: The regulator cannot commit to a particular intervention action.

This assumption is consistent with the practice of prudential regulation (see e.g., Dewa-

tripont and Tirole, 1994). For instance, in the United States, the Federal Reserve only sets

capital requirement ratios (e.g., to be well-capitalized, a bank holding company must have

a Tier-1 capital ratio of 6%) but never firmly specifies any intervening action. Such lack

of commitment by banking regulators has been examined extensively in the literature (e.g.,

Bagehot, 1873; Mailath and Mester 1994; Freixas, 1999).

Assumption 2: Liquidating high-risk loans results in a lower payoff than continuation

in expectation, i.e.,

Lβ < τβ. (2)

Two points regarding Assumption 2 are noteworthy. First, it captures realistic features of

markets for risky loans such as sub-prime loans: these markets are illiquid and consist of

buyers who are typically the second-best users so that regulators often recover very little

residual value. (Acharya and Yorulmazer, 2007)6. Therefore, unlike liquidating prime loans

when regulators typically recover the original investment, liquidating risky subprime loans

entails significant losses. Second, it implies that in our model, once the bank has already

originated the high-loan loan, the regulator cannot commit to intervening in the bank because

6Assumption 2 can be relaxed to incorporate random liquidation values that may be higher or lower than
the continuation value. What is important for our model is that the expected liquidation value of the high-risk
loan is lower than its continuation value so that liquidating subprime loans entails losses in expectation.
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liquidating the bank’s high-risk loan entails large expected losses. Such ex-post ineffi ciency

in the regulatory intervention, in turn, calls for the optimal design of the ex-ante capital

requirement policy to deter the bank from originating high-risk loans in the first place.

Stated differently, under Assumption 2, the capital requirement policy becomes an essential

tool for the regulator in disciplining banks’excessive risk-taking incentives.

Assumption 3: A high-risk loan is value-destroying whereas a low-risk loan is value-

creating.

This assumption ensures that the regulator has an incentive to discipline the bank from

investing in high-risk loans. It turns out that a suffi cient condition for Assumption 3 is

τβ < 1. (3)

Note that because the low-risk loan generates a liquidation payoff of 1, it generates at least

zero NPV even in case of liquidation. In addition, (3) ensures that the high-risk loan always

generates negative NPV.7

Assumption 4: The bank always prefers to invest in the high-risk loan if it lends the

maximal extent, i.e., A = Ā.

This assumption rules out the degenerate case in which the bank can achieve the first-best

by choosing the highest leverage and lending the maximal extent, thus making the capital

requirement regulation undesirable. When Ā is suffi ciently large, this assumption is reduced

7Assuming that both loans generate positive NPV does not affect our analysis qualitatively. Given the
constraint on the bank’s size, A ≤ Ā, the regulatory problem would then reduce into one in which the
regulator has an incentive to induce the bank to invest in the loan with a higher NPV.
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into:

τ (β − 1) >

(∫ 1

1
α

sf (s|s1) ds

)
(α− 1) , (4)

for any s1 ∈ [τ , 1].

3 Provisioning for loan losses and capital ratio

We now provide an implementation of loan loss provisioning accounting standards under

CECL in the context of our model. In particular, we show how provisioning for loan losses

affects the bank’s balance sheet and capital ratio.8 For simplicity, we assume that the events

at t = 3 occur immediately after those at t = 2 to avoid the recognition of the accrual of

interest revenue between t = 2 and t = 3. Stated differently, we assume that the length of

time between the date at which the uncertainty regarding the default risk is resolved (t = 2)

and the date at which the loan’s terminal cash flows are realized (t = 3) is negligible relative

to the entire duration of the loan (i.e., from origination at t = 1 to maturity at t = 3). We

use the notations Et and At to denote the carrying values of the bank’s equity and assets at

date t, respectively.

At t = 0, the value of the bank’s assets A0 = E + D = A and the value of the bank’s

8We are grateful to Mary Barth and Alexander Nezlobin who encouraged us to better connect our model
to the practical implementation of an expected loss model such as CECL.
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equities E0 = E. The regulatory capital requirement thus requires that9:

E0

A0

=
E

A
= γ. (5)

At t = 1, after originating the loans, the bank considers whether to provision for loan

losses. Consider first the case that the bank originates a low-risk loan. Under the incurred

loss model, because the bank delays the recognition of loan losses, its asset and equity values

are unchanged, i.e., A1 = A and E1 = E. The bank continues to satisfy the regulatory

capital requirement,

E1

A1

=
E

A
= γ. (6)

As a result, the regulator cannot intervene at t = 1 under the incurred loss model.

The recognition of loan losses under the expected loss model, however, differs substan-

tially from that under the incurred loss model because the expected loss model “forces banks

to recognize expected future losses immediately”at origination.10 In particular, FASB Ac-

counting Standards Update No. 2016-13 states that, upon initial measurement, “the entity

shall discount expected cash flows at the financial asset’s effective interest rate,”and “the

allowance for credit losses shall reflect the difference between the amortized cost basis and

the present value of the expected cash flows.”(FASB, 2016, paragraph 326-20-30-4). Under

9Bank regulators may also use other types of regulation based on the bank’s balance sheet such as some
risk-weighted measure of assets to regulate capital. By Basel II and III, assets are partitioned into different
groups based on their risk and these different groups are assigned different weights. Adding an additional
risk-weighted capital constraint in our model, however, will not alter any of our results for two reasons. First,
at t = 0, the bank always satisfies the risk-weighted capital requirement because, prior to originating its
loans, the bank’s assets consists of cash that receives a risk weight of 0. Second, as shown in our later analysis,
with only the leverage requirement, the regulator already implements the ex post optimal intervention policy
at t = 1 and t = 2. Adding another regulatory constraint hence alters neither the regulator’s intervention
decisions nor the bank’s decisions.
10See https://bpi.com/cecl-regulatory-capital-proposal-leaves-many-important-questions-unanswered/.
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the expected loss model, the bank therefore accounts for the expected change s1 in the de-

fault risk and measures the value of the loan by discounting the expected future cash flows

from the loan (AαE [s|s1]) using the loan’s effective interest rate (α− 1):

A1 =
AαE [s|s1]

1 + α− 1
= AE [s|s1] . (7)

Comparing A1 to A0 implies that the balance of the allowance for loan losses, A0 − A1 =

A (1− E [s|s1]). Provisioning for loan losses, in turn, reduces the bank’s equity to E1 =

E − A (1− E [s|s1]) so that the bank’s capital ratio changes to

E1

A1

=
E − A (1− E [s|s1])

A− A (1− E [s|s1])
<
E

A
= γ. (8)

That is, under the expected loss model, reporting s1 at t = 1 violates the regulatory capital

requirement that, in turn, triggers regulatory intervention.

Consider next the case that the bank originates a high-risk loan. Since the default risk

τ is realized at t = 1, under both the incurred loss model and the expected loss model, the

bank measures the value of the loan by discounting the expected future cash flows from the

loan (Aβτ) to their present value using the loan’s effective interest rate (β − 1):

A1 =
Aβτ

1 + β − 1
= Aτ. (9)

Comparing A1, the carrying value of the loan at t = 1 to A0, the carrying value of the loan at

t = 0 gives the amount of impairment on the loan, A0 − A1 = A (1− τ). After provisioning

for loan losses, the bank’s equity becomes E1 = E − A (1− τ) so that the bank’s capital
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ratio becomes

E1

A1

=
E − A (1− τ)

A− A (1− τ)
<
E

A
= γ. (10)

Under both incurred loss and expected loss, the bank who invests in a high-risk loan always

violates the regulatory capital requirement at t = 1. However, since liquidating the high-risk

loan entails losses in expectation, the regulator will choose to continue the bank’s high-risk

loan in equilibrium so that the violation of capital requirements does not matter.

Finally, at t = 2, if the bank originates a low-risk loan, the recognition of loan losses

is similar to that in t = 1, except that the bank needs to recognize the expected interest

revenue Aα (s− 1) accrued between t = 1 and t = 2. In particular, under both the incurred

and the expected loss models, the bank recognizes the accrued interest revenue and measures

the value of the loan at the total expected cash flows from the loan:

A2 = As+ As (α− 1) = Aαs. (11)

Comparing A2 to the carrying value of the loan at t = 0 gives the adjusted balance of the

allowance for loan losses: A0 −A2 = A (1− αs). Adjusting the loan losses, in turn, changes

the value of the bank’s equity, i.e., E2 = E − A (1− αs). The bank’s capital ratio thus

changes to

E2

A2

=
E − A (1− αs)
A− A (1− αs) . (12)

Note that E2
A2

< E
A

= γ if and only if αs < 1. Therefore, the bank with a low-risk loan

violates the capital requirement at t = 2 if and only if αs < 1.

If the bank originates a high-risk loan, under both the incurred and the expected loss
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models, the bank measures the value of the loan at the total expected cash flows from the

loan, including the accrued expected interest revenue Aτ (β − 1):

A2 = Aτ + Aτ (β − 1) = Aβτ. (13)

Comparing A2 to the carrying value of the loan at t = 0 gives the adjusted amount of the

allowance for loan losses: A0−A2 = A (1− βτ). After recognizing the loan losses, the bank’s

equity becomes E2 = E − A (1− βτ) so that the bank’s capital ratio changes to

E2

A2

=
E − A (1− βτ)

A− A (1− βτ)
<
E

A
= γ. (14)

The inequality is due to βτ < 1. Therefore, the bank that originates a high-risk loan always

violates the capital requirement at t = 2.

In sum, at t = 1, the bank with a low-risk loan violates the regulatory capital requirement

under the expected loss model but satisfies it under incurred loss. As a result, under incurred

loss, the regulator cannot intervene at t = 1 whereas, under expected loss, the bank’s

violation of the capital requirements allows the regulator to implement the ex post optimal

intervention policy, as assumed in our model setup. At t = 2, under both loan loss models,

the bank satisfies the regulatory capital requirement if and only if the bank invests in a

low-risk loan and αs ≥ 1. Note that these triggers of capital requirements violations at

t = 2, again, allow the regulator to implement the ex post optimal intervention policy to the

extent that whenever the bank meets the capital requirement, the regulator also prefers to

continue the bank ex post.
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4 Analysis

4.1 Exogenous loan risk

As a benchmark, we first solve our model for a given loan portfolio, i.e., treating the bank’s

ex ante risk q as exogenous.

4.1.1 Incurred loss model with exogenous risk

We analyze the incurred loss model in which the bank does not recognize s1 so that the

regulator can only intervene at t = 2 after the default risk s is realized. We solve the model

using backward induction. At t = 2, given default risk s, the regulator decides whether to

liquidate the bank by comparing the total expected payoffs from liquidation with the total

payoffs from continuation. If the bank’s loan turns out to be high-risk, it generates Lβ upon

liquidation and τβ > Lβ upon continuation. Therefore, the regulator never liquidates the

high-risk loan. On the other hand, if the loan turns out to be low-risk, it generates 1 upon

liquidation and αs upon continuation. Therefore, the regulator liquidates the low-risk loan

if and only if

s <
1

α
. (15)

Next, we solve for the bank’s asset-substituting decision r at t = 1 conditional on the

early information s1. Denote the bank’s shareholders’(hereafter the bank’s) expected payoff

by U(r|s1). If the bank has already received a high-risk loan, the asset-substitution decision

is moot. If the bank receives a low-risk loan and chooses not to engage in asset substitution
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(r = 0), its payoff is:

U(0|s1) =

[∫ 1

1
α

sf (s|s1) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s1

]
E. (16)

Note that the bank’s expected payoff at t = 1 depends on the regulator’s liquidation decision

at t = 2. If s ≥ 1/α so that the regulator does not liquidate the bank, the bank receives a

net payoff of Aα− (A−E) after repaying depositors with probability s, and receives 0 with

probability 1− s. But if s < 1/α, the regulator liquidates the bank so that the bank receives

the certain liquidation payoff A− (A− E) = E after repaying depositors.

If the bank engages in asset substitution so that r = 1, its payoff is

U (1|s1) = τ(Aβ − (A− E)). (17)

Conditional on obtaining a high-risk loan, the bank receives Aβ − (A − E) after repaying

depositors with probability τ , and receives 0 with probability 1−τ . Note that since the bank’s

payoff from a high-risk loan U (1|s1) does not depend on s1, to economize on notations, we

hereafter omit s1 in U (1|s1) and denote it by U (1). The bank chooses asset substitution if

and only if

U(1) > U(0|s1), (18)

which reduces into

τ(Aβ − (A− E)) >

([∫ 1

1
α

sf (s|s1) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s1

]
E

)
. (19)
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The left hand side of (19) represents the bank’s payoff from investing in a high-risk loan and

does not depend on s1. As s1 increases, the posterior distribution of s shifts to the right

so that the right hand side of (19) which represents the bank’s payoff from investing in a

low-risk loan strictly increases in s1. As a result, there exists a unique cutoff s̄1(A) such

that the bank engages in asset substitution if and only if its early information regarding the

low-risk loan’s performance is below the cutoff, i.e., s1 < s̄1(A). We next formally state the

bank’s equilibrium asset-substituting decision.

Proposition 1 There exists a unique threshold s̄1(A) ∈ [τ , 1] such that the bank makes the

asset-substituting decision (r = 1) if and only if s1 < s̄1(A). The threshold s̄1(A) is given by:



s̄1(A) = τ if A ∈ [E,Amin];

s̄1(A) ∈ (0, 1) if A ∈ (Amin, Amax);

s̄1(A) = 1 if A ∈ [Amax, Ā].

The cutoffs {Amin, Amax}, where Amin < Amax, are defined in the Appendix. For A ∈

(Amin, Amax), s̄1(A) is the unique solution to:

τ =

[∫ 1

1
α

sf (s|s̄1(A)) ds

]
Aα− (A− E)

Aβ − (A− E)
+ Pr

[
s <

1

α
|s̄1(A)

]
E

Aβ − (A− E)
. (20)

Ceteris paribus, the threshold s̄1(·) increases in the bank size A and in the face value of the

high-risk loan β but decreases in the face value of the low-risk loan α for s̄1(A) ∈ (0, 1).

Proposition 1 is intuitive. It states that when the bank expects the performance of its loan

portfolio to deteriorate, its incentives to engage in asset substitution increase. Furthermore,
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Figure 2: The effect of leverage on the asset-substituting threshold for A ∈
[
E, Ā

]
. The

following parameter values are used in this plot: α = 1.5, β = 2.5, E = 1, τ = 0.25 and
w = 0.45.

such incentives become sharper when either the relative payoff of the high-risk loan to the

low-risk loan β/α increases and/or the bank’s leverage A increases. The latter result suggests

a beneficial role for capital requirements in curbing asset substitution: a higher regulatory

capital ratio γ (equivalently, a lower A) weakens the bank’s asset-substituting incentives in

the interim. Figure 2 illustrates the effect of A on the asset-substitution decision. When

the leverage of the bank is extremely low (i.e., whenever the bank faces a tight capital

requirement), the bank never engages in asset substitution, whereas when the leverage is

extremely high (whenever the bank faces a loose capital requirement), the bank always

chooses to asset-substitute. For intermediate values of leverage, the bank’s assessment of

its loan performance matters and the bank engages in asset substitution if and only if such

assessment deteriorates.
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4.1.2 Expected loss model with exogenous risk

We now analyze the expected loss model in which the bank reports s1 so the regulator can

either intervene early at t = 1 based on s1 or late at t = 2 based on s. We again solve the

model using backward induction. Note that the regulator’s liquidation decision at t = 2 is

the same as that in the incurred loss model because under both models, the regulator receives

the full information s about the default risk. Facing the same liquidation policy at t = 2,

the bank’s asset-substituting decision also stays the same across both models. Nonetheless,

there exists a key difference between the two loan loss models: under the expected loss model,

timely recognition of loan losses s1 allows the regulator to intervene early at t = 1.

More specifically, conditional on a high-risk loan, the regulator intervenes but chooses to

not liquidate, as explained previously. Conditional on a low-risk loan, two key factors come

into play when the regulator decides whether to liquidate: 1) the information s1 and 2) the

bank’s future asset-substituting decision r. While the regulator receives a constant payoff

of 1 from liquidation, her expected payoff from continuation depends on both s1 and r. If

s1 ≥ s̄1(A), the regulator rationally anticipates that the bank will keep the low-risk loan

whose expected surplus is

∫ 1

1
α

αsf (s|s1) ds+ Pr

[
s <

1

α
|s1

]
> 1. (21)

That is, absent the asset-substitution problem, the regulator should never liquidate the bank

early based on the timely but imperfect information s1, because such information may entail

false alarms (i.e., liquidating a bank whose expected payoff of continuation exceeds that of

liquidation, αs > 1). The regulator can always avoid the false alarm cost by postponing
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the decision to a later date when better information arrives (i.e., the default risk s is fully

realized at t = 2).

However, given the bank’s asset substitution incentives when s1 < s̄1(A), early interven-

tion becomes desirable to curb such behavior. To elaborate, consider the following trade-off

the regulator faces in intervening early in the bank’s operations. On the one hand, as dis-

cussed previously, there are still false alarm costs from early intervention as it relies on

imprecise information s1 about future default risk s. The regulator may liquidate a bank

that is financially sound (s > 1/α) but nevertheless receives some bad interim information

(s1 < s̄1(A)), resulting in false alarm costs of

∫ s̄1

τ

(αs− 1) g (s1) ds1. (22)

On the other hand, however, there is also a benefit of early intervention stemming from

curbing asset substitution. To see this, note that when the loan performance deteriorates,

i.e., s1 < s̄1(A), the regulator anticipates that the bank will switch to the high-risk loan,

which generates an expected surplus of τβ. The asset substitution, in turn, results in an

expected surplus loss relative to the expected surplus that the low-risk loan could have

generated had the loan been continued which is given by:

∫ s̄1

τ

(αs− τβ) g (s1) ds1. (23)

In equilibrium, the regulator decides whether to intervene early by comparing the false alarm

cost with the expected surplus loss from asset substitution. The regulator intervenes if and
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only if the asset-substitution surplus loss outweighs the false alarm cost, which always holds

because

∫ s̄1

τ

(αs− τβ) g (s1) ds1 −
∫ s̄1

τ

(αs− 1) g (s1) ds1

=

∫ s̄1

τ

(1− τβ) g (s1) ds1 ≥ 0. (24)

The last inequality follows from 1 > τβ (Assumption 3). That is, by curbing asset substitu-

tion, early intervention always generates net surplus gains despite the false alarm cost. The

term in (24) thus represents the net social benefit of timely intervention. Stated differently,

a rational and benevolent regulator fully internalizes the false alarm costs from acting on

early but imprecise information and chooses an action that results in the highest surplus in

expectation. We formally state the regulator’s decision at t = 1 in the following proposition.

Proposition 2 Under the expected loss model, conditional on the early information s1, the

regulator intervenes and liquidates the bank at t = 1 if and only if the bank has a low-risk

loan and s1 < s̄1(A).

4.1.3 Surplus comparison with exogenous risk

With the equilibrium characterized for a given bank size A, we compare the surplus between

under the incurred loss model and the expected loss model, holding the bank’s ex ante risk
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choice q fixed. The surplus under incurred loss is

WIL(A) = (1− q)Aτβ + q

(
A

∫ s̄1(A)

τ

τβg(s1)ds1

+A

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1

)
− A. (25)

With probability 1 − q, the bank gets a high-risk loan and the expected surplus is τβ,

whereas with probability q, the bank gets a low-risk loan. The bank keeps the low-risk loan

if s1 ≥ s̄1(A) and switches to a high-risk one if s1 < s̄1(A).

Under the expected loss model, the surplus is

WEL(A) = (1− q)Aτβ + q

(
A

∫ s̄1(A)

τ

g(s1)ds1

+A

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1

)
− A. (26)

The only difference between the incurred and the expected loss models is that, if the bank

gets a low-risk loan which occurs with probability q and s1 < s̄1(A), the bank is liquidated

under the expected loss model whereas the bank is allowed to continue and asset-substitute

under the incurred loss model. Recognizing this difference, we obtain:11

WEL(A)−WIL(A) = qA

[∫ s̄1(A)

τ

(1− τβ) g(s1)ds1

]
≥ 0. (27)

Since the expected loss model dominates for all ranges of asset sizes A, it also dominates

when the regulator sets the capital requirement policy optimally. We formally state this

11The inequality is strict if s̄1(A) > τ (i.e., A ∈ (Amin, Ā] from Proposition 1). Note that the surplus gain
from expected loss in (27) coincides with the net benefit of timely intervention in (24).
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Figure 3: Surplus comparison with exogenous risk for A ∈
[
E, Ā

]
. The following parameter

values are used in this plot: α = 1.5, β = 2.5, E = 1, τ = 0.25, w = 0.45, and q = 0.9.

result in the following proposition and provide a graphical illustration in Figure 3.

Proposition 3 Fixing the bank’s ex ante risk q of the loan portfolio, the expected loss model

always dominates the incurred loss model.

Proposition 3 implies that the early information revealed by the expected loan loss model

generates an expected benefit because it allows regulators to intervene in a more timely

manner in banks’operations to curb ineffi cient asset substitution. Interestingly, such benefit

cannot be overturned by the false-alarm costs stemming from the imprecise information of the

expected loss model, thereby making accuracy vs. timeliness trade—offone-sided. The reason

is that, the regulator rationally takes into account the (im)precision of the early information

and therefore internalizes such false alarm costs in determining whether to intervene. The

preceding result supports claims made by proponents of expected loss models who have

argued that by providing more timely information about the performance of banks’loans,

expected loss models would prompt earlier corrective action in bad times. Proposition 3
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confirms those views and shows that expected loss models dominate incurred loss models

as long as the ex ante risk of the banks’ loan portfolios is kept fixed. However, banks are

not passive technologies—rather banks’insiders could respond to the regulator’s intervention

strategy by changing their lending behavior. We next investigate the impact of provisioning

models on the ex ante risk of the loans that banks originate.

4.2 Endogenous loan risk

We now analyze the complete model in which the bank can choose the riskiness q of the

loans at the origination stage.

4.2.1 Incurred loss model with endogenous risk

We start with the incurred loss model. For a given bank size A, the bank chooses risk q that

solves

q∗IL ∈ arg max
q∈[0,1]

U (q) =

∫ s̄1(A)

τ

U(1)g (s1) ds1︸ ︷︷ ︸
expected payoff given asset substitution

(28)

+

∫ 1

s̄1(A)

[qU (0|s1) + (1− q)U(1)] g (s1) ds1︸ ︷︷ ︸
expected payoff given no asset substitution

− C (q) .

Recall that if s1 < s̄1 (A), the bank’s payoff is independent of its initial risk choice because

the bank will engage in asset substitution and change the loan portfolio into a high-risk one.

Thus, the ex ante risk choice only matters when the bank does not asset substitute. The

higher the likelihood of interim asset substitution, the lower the bank’s incentives to engage

in costly ex ante screening, i.e., q∗IL decreases in s̄1 (A) . As the bank’s leverage becomes
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very large, i.e., A ∈ [Amax, Ā] so that s̄1 (A) = 1, the bank always engages in interim asset

substitution making the ex ante risk decision moot. In this case, because screening is costly,

the bank chooses not to screen the borrowers ex ante so that q∗IL = 0.

The first order condition of the preceding equation with respect to q yields:

∫ 1

s̄1(A)

[U (0|s1)− U(1)] g (s1) ds1 = C ′ (q∗IL) . (29)

The right hand side of equation (29) captures the marginal cost of screening borrowers

whereas the left hand side captures the marginal benefit of screening stemming from reducing

the future default risk. To see the latter effect, note that from equation (19),

U (0|s1)−U(1) =

([∫ 1

1
α

sf (s|s1) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s1

]
E

)
−τ(Aβ−(A−E)),

(30)

which is the incremental payoff from investing in the low-risk loan vs. the high-risk loan. It

is positive because, by the incentive-compatibility constraint (19), the bank strictly prefers

the low-risk loan for s1 ≥ s̄1.

We formally state the bank’s ex ante risk choice in the following proposition.

Proposition 4 Under the incurred loss model, the bank chooses risk q∗IL such that, for bank

size A ∈ [E,Amax), q∗IL ∈ (0, 1) where q∗IL solves equation (29), whereas for A ∈ [Amax, Ā],

q∗IL = 0. Ceteris paribus, the risk choice q∗IL decreases in bank size A, increases in the face

value of the low-risk loan α, and decreases in the face value of the high-risk loan β.
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4.2.2 Expected loss model with endogenous risk

Under the expected loss model, the bank chooses risk q that solves

q∗EL ∈ arg max
q∈[0,1]

U (q) =

∫ s̄1(A)

τ

[qE + (1− q)U(1)] g (s1) ds1 (31)

+

∫ 1

s̄1(A)

[qU (0|s1) + (1− q)U(1)] g (s1) ds1 − C (q) .

Note that when s1 < s̄1 (A), the bank’s expected payoff under the expected loss model

differs from that under the incurred loss model in (28). Under the expected loss model, if

the regulator expects the performance of the bank’s portfolio to deteriorate, the regulator

intervenes and disciplines the bank with the low-risk loan by preventing it from engaging

in asset substitution. Using this equilibrium property, we obtain that for s1 < s̄1 (A), the

bank’s expected payoff is qE + (1− q)U(1).

Taking the first order condition with respect to q yields:

∫ s̄1(A)

τ

[E − U(1)] g (s1) ds1 +

∫ 1

s̄1(A)

[U (0|s1)− U(1)] g (s1) ds1 = C ′ (q∗EL) . (32)

To compare the risk choices across the provisioning models, we plug the first order condition

(29) on q∗IL into the first order condition (32) to obtain:

C ′ (q∗EL)− C ′(q∗IL) =

∫ s̄1(A)

τ

[E − U(1)] g (s1) ds1 ≤
∫ s̄1(A)

τ

[U (0|s1)− U(1)] g (s1) ds1 ≤ 0,

(33)

where all the inequalities are strict if s̄1 > τ . The first inequality holds because, due to its

limited liability, the bank strictly prefers the regulator to continue the low-risk loan than
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liquidate it early.12 The second inequality holds because, by the incentive-compatibility

constraint (19), the bank strictly prefers the high-risk loan for s1 ≤ s̄1. Since C ′′ > 0,

q∗EL ≤ q∗IL.

A key message from equation (33) is that—when real effects are taken into account—early

intervention is a double-edged sword: while timely intervention curbs asset substitution ex

post, it might induce timelier risk-taking ex ante. To understand the latter risk-aggravating

effect, note that under the incurred loss model, the bank prefers to defer taking excessive

amounts of risk until it receives more precise information on the performance of its loan

portfolio (i.e., upon learning s1 ≤ s̄1). However, under the expected loss model, the option

value of waiting for more precise information diminishes due to regulatory intervention that

preempts asset substitution in the region of s1 ∈ [τ , s̄1]. Anticipating this, the bank shifts

the timing of its risk-taking earlier by originating riskier loans ex ante under the expected

loss model.

Finally, when A increases and becomes suffi ciently close to Amax, then limA→Amax s̄1(A) =

1 so that the left hand side of the first order condition (32) becomes

∫ 1

τ

[E − U(1)] g(s1)ds1 < 0. (34)

The inequality holds because, by (33), for s1 ≤ s̄1 (Amax) = 1, E − U(1) ≤ 0 so that at A =

Amax, q∗EL = 0. In addition, when A is suffi ciently small and close to Amin, limA→Amin s̄1(A) =

τ , and by (33), q∗EL = q∗IL > 0. An application of the intermediate value theorem thus

12Mathematically, U (0|s1) − E =
[∫ 1

1
α
sf (s|s1) ds

]
(Aα − (A − E)) + Pr

[
s < 1

α |s1

]
E − E =∫ 1

1
α

[s(Aα− (A− E))− E] f (s|s1) ds > 1
α (Aα− (A− E))− E = (A− E)

(
1− 1

α

)
> 0.
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suggests that, there exists some cutoff Ae ∈ (Amin, Amax) such that for A ≥ Ae, we have

q∗EL = 0. The cutoff Ae is defined by

∫ s̄1(Ae)

τ

[E − U(1)] g (s1) ds1 +

∫ 1

s̄1(Ae)

[U (0|s1)− U(1)] g (s1) ds1 = 0, (35)

such that the left hand side of (32) equals 0. Note that since Ae < Amax, the region in which

q∗EL = 0 (i.e., A ∈ [Ae, Ā]) is larger than that in which q∗IL = 0 (i.e., A ∈ [Amax, Ā]). We

formally state these results in the following proposition.

Proposition 5 Under the expected loss model, the bank makes the risk choice q∗EL such

that, if bank size A ∈ [E,Ae), q∗EL ∈ (0, 1) and solves equation (32). Otherwise, for bank

size A ∈ [Ae, Ā], q∗EL = 0. The bank originates riskier loans ex ante under expected loss

than incurred loss, i.e., q∗EL ≤ q∗IL, where the inequality is strict if A ∈ (Amin, Amax). Ceteris

paribus, the risk choice q∗EL decreases in bank size A, increases in the face value of the low-risk

loan α, and decreases in the face value of the high-risk loan β.

Proposition 5 implies that when real effects are taken into account, there is a non triv-

ial trade-off from adopting the expected loss model. While timely regulatory intervention

provides discipline by curbing ex post ineffi cient asset substitution, banks respond to such

intervention by originating riskier portfolios that, in turn, reduce surplus. We next inves-

tigate the conditions under which the ex post benefits of timely intervention exceed the ex

ante costs triggered by such real effects and vice versa.
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4.2.3 Surplus comparison with endogenous risk

To compare the results of endogenous risk choices with those of exogenous risk choices

(Proposition 3), we first compare the surplus between the two provisioning models for a

given bank size A.

Proposition 6 With risk choices endogenized, there exists a set of thresholds
{
Â, p̂, ŝ1

}
,

where Â ∈ (Amin, Ae) and p̂ ∈ (0, 1), such that:

1. if A ≥ Ae, the incurred loss model dominates the expected loss model;

2. if Amin < A < Â and Pr
(
s < 1

α
|s1 ≤ ŝ1

)
> p̂, the expected loss model dominates the

incurred loss model.13

Proposition 6 demonstrates that once we allow the bank’s loan choices to respond to

regulatory intervention, more timely information under the expected loss model is no longer

always socially desirable. In fact, the expected loss model becomes inferior when banks are

heavily leveraged. To see this, recall that when A ≥ Ae, q∗EL = 0 < q∗IL. When the bank

is highly leveraged, under the expected loss model, the bank always chooses the high-risk

loan whereas under the incurred loss model, the bank chooses the low-risk loan with some

probability, thus resulting in a higher surplus.

Proposition 6 also identifies suffi cient conditions under which the benefits of ex post

timely intervention under expected loss outweigh the costs triggered by its ex ante real

effects. In particular, if the bank is not too highly leveraged and the low interim signal

is suffi ciently informative about the NPV of the low-risk project, then the expected loss

13Note that the bank never asset substitutes when A ≤ Amin so the bank surplus is identical under both
provisioning models.
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model dominates the incurred loss model.14 Intuitively, the bank is more likely to engage in

asset substitution when the interim signal is low. Therefore, from a regulatory perspective,

such early intervention entails the least amount of false alarms when the low interim signal

is suffi ciently informative. When this is the case, early intervention under expected loss

generates a large benefit that dominates the cost stemming from the real effects. A key policy

implication is that, once we endogenize the bank’s risk choices, the effi ciency of the expected

loss model hinges on its accuracy in estimating early loan losses. Note that this implication

stands in stark contrast to the case with exogenous risk choices in which, regardless of

its precision, timely information under expected loss is always socially desirable. Stated

differently, the accuracy—timeliness trade-off and the false alarm arguments proposed by

opponents of expected loss models come to life only when one takes into account the real

effects of accounting measurements.

Finally, the fact that the expected loss model improves the bank’s surplus if leverage

is suffi ciently low but reduces the surplus otherwise suggests there exists a unique leverage

threshold above which the expected loss model is dominated by the incurred loss model.

Although the complexity of our model prevents us from showing the existence of such a

unique threshold, numerical simulations suggest that such a conjecture is indeed true, as

illustrated in Figure 4 which shows that WEL < WIL if and only if the leverage A is large.

14More precisely, the condition Pr
(
s < 1

α |s1 ≤ ŝ1

)
> p̂ requires that, conditional on some bad interim

signals (i.e., s1 ≤ ŝ1), the posterior belief that the low-risk project generates a negative NPV (i.e., αs < 1)
is suffi ciently high. Furthermore, as shown in the proof of Proposition 6, under the linear-uniform structure
of s = ws1 + (1− w) s2, this condition requires that the precision w of s1 is suffi ciently large.
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Figure 4: Surplus comparison with endogenous risk for A ∈
[
E, Ā

]
. The following parameter

values are used in this plot: α = 1.5, β = 2.5, E = 1, τ = 0.25, w = 0.45, and C (q) = q30

20
.

4.2.4 Optimal design of capital requirements under CECL

An implication of Proposition 6 is that the regulator should take into account the real effects

of loan loss provisioning models when designing the capital requirement policy. Put differ-

ently, changing the methodology for estimating loan losses requires the banking regulator to

simultaneously adjust capital ratios. To better understand how the regulator should make

such adjustments, we next solve for the optimal capital ratios under the two provisioning

models.

We first reproduce the surplus under the incurred loss model, equation (25), here:

WIL(A) = (1− q∗IL)Aτβ + q∗IL

(
A

∫ s̄1(A)

τ

τβg(s1)ds1

+A

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1

)
− A. (36)
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Taking the first order condition yields

∂WIL

∂A

= NPVIL (s̄1(A))− q∗ILA
∂s̄1

∂A

([∫ 1

1
α

sf (s|s̄1(A)) ds

]
α + Pr

[
s <

1

α
|s̄1(A)

]
1− τβ

)
g(s̄1(A))

+A
∂q∗IL
∂A

(∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

]
− τβ

)
g(s1)ds1

)
. (37)

The first term in ∂WIL

∂A
,

NPVIL (s̄1(A)) = τβ − 1 + q∗IL

(∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α

+ Pr

[
s <

1

α
|s1

]
− τβ

)
g(s1)ds1

)
, (38)

measures the per-unit NPV from the bank’s loan portfolio and represents the potential social

benefit of increasing the bank’s size. It is straightforward to verify the NPV is positive if

and only if the asset size A is suffi ciently small. The reason is that, if the bank is highly

leveraged, it will convert its entire loan portfolio into high-risk in the interim, which, by

Assumption 3, generates a negative NPV in expectation.

The other two terms in ∂WIL

∂A
are both negative and represent the social costs of increasing

the bank’s size. In particular, the second term captures the effect of increasing the asset

size in motivating the bank to asset substitute ex post (i.e., ∂s̄1
∂A

> 0) whereas the third

term captures the effect of increasing the asset size in discouraging the bank from exerting

screening effort ex ante (i.e., ∂q
∗
IL

∂A
< 0).15

15Mathematically, the second term in ∂WIL

∂A is negative because 1) from Proposition 1, ∂s̄1∂A > 0 and 2)[∫ 1
1
α
sf (s|s̄1(A)) ds

]
α+ Pr

[
s < 1

α |s̄1(A)
]
> 1 > τβ (Assumption 3). The third term is negative because, 1)
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The regulator sets the optimal capital requirement ratio by trading off the above benefit

against the costs. We denote the optimal bank size under the incurred loss model by A∗IL

which solves the first order condition (37). The optimal bank size under the expected loss

model can be similarly derived. We denote it by A∗EL.
16 Because A∗IL and A

∗
EL are defined

by implicit solutions to differential equations, in general, we are unable to compare them

analytically. To facilitate this comparison, we hereafter impose two additional assumptions

for the rest of the analysis.

Assumption 5: The surplus functions WIL and WEL are both single-peaked in A ∈[
E, Ā

]
, i.e., there exists a unique A∗i , where i ∈ {IL,EL}, such that ∂Wi

∂A
> 0 if and only if

A < A∗i .

The assumption guarantees the uniqueness of the optimal capital requirements and rules out

scenarios in which there are multiple spikes in the surplus functions. Numerical examples

suggest that the surplus functions are indeed single-peaked, as illustrated in Figure 4.

Assumption 6: Absent asset substitution, the bank’s loan portfolio, ex ante, generates

a positive NPV, i.e., for A ≤ Amin, Wi ≥ 0, where i ∈ {IL,EL}.

The assumption rules out uninteresting scenarios in which the cost of screening C (q) is so

steep that the bank’s incentives to screen borrowers and originate low-risk loans are low even

when the bank’s leverage is relatively low.

Given these two assumptions, we next derive a suffi cient condition under which A∗EL >

A∗IL, i.e., the regulator should lower the capital ratio in response to the adoption of the

expected loss model.

from Proposition 4, ∂q
∗
IL

∂A < 0 and 2)
[∫ 1

1
α
sf (s|s1) ds

]
α+ Pr

[
s < 1

α |s1

]
> 1 > τβ.

16The first order condition that defines A∗EL is complicated and we derive it in the proof of Proposition 7.
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Proposition 7 There exist some thresholds
{
β, s1, p, g

}
, such that, if Pr

(
s < 1

α
|s1 ≤ s1

)
>

p, infs1≤s1 g (s1) > g, and β < β, the regulator sets tighter capital requirements under the

incurred loss model than under the expected loss model, i.e., A∗IL < A∗EL, and the expected

loss model dominates the incurred loss model, i.e., WEL(A∗EL) > WIL(A∗IL).

Proposition 7 identifies a region of parameters in which the regulator may be able to relax

the capital requirements when banks use the expected loss model for loan loss provisioning.

In that region, both the precision and the likelihood of the bad interim information are

relatively high, and/or when the incentives to engage in ineffi cient asset substitution are

not too severe. Intuitively, the likelihood of asset substitution is greater if the interim

signal is more likely to be bad. In this case, when the expected loss model provides more

precise interim information, it reduces the amount of false alarm cost from early intervention,

thus making the intervention more effective in curbing ex post asset-substitution. Since the

regulation has become more effective under expected loss, the regulator can actually relax

the capital requirement.

Note that the conditions in Proposition 7 are suffi cient conditions for relaxing capital

requirements under expected loss. When the conditions are not met, it is diffi cult to compare

the optimal capital requirements across the loan loss models analytically, and we thus turn

to numerical analyses. Using the linear-uniform structure, Figure 5 provides a numerical

example that illustrates the comparison between the optimal capital requirements. The

figure shows that the regulator should loosen the capital requirement under the expected

loss model in the lower-right region when the expected loss model reports more precise

interim information (high w) and/or the high-risk loan is less attractive to the bank (low
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Figure 5: Comparison between optimal capital requirements under the expected loss model
and the incurred loss model. The following parameter values are used in this plot: α = 1.5,
E = 1, τ = 0.25 and C (q) = q30

20
.

β). On the other hand, when the bank finds the high-risk loan more appealing to invest

in (high β), the excessive risk-taking problem becomes suffi ciently severe that the regulator

sets an extremely stringent capital requirement under any loan loss provisioning models, i.e.,

both A∗EL and A
∗
IL fall below Amin, such that the surplus under the two loan loss models

overlaps. In this case, the optimal capital requirements are the same across the two loan loss

provisioning models.

Another key message of Proposition 7 is that, provided that the capital requirements

are optimally set, the expected loss model generates a higher surplus than the incurred loss

model. Stated differently, while Proposition 6 suggests that, fixing the capital requirement

policy, the timely information released under expected loss, if not suffi ciently precise, may

impair surplus, Proposition 7 shows that such adverse effect can be overturned if the regulator

can appropriately tailor the capital ratio in response to the provisioning model. These results
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echo the recent call for better coordination between accounting and bank regulation.17

5 Conclusion

The loan loss provision is arguably the largest accrual item on banks’financial statements and

thus “plays a prominent role in much of the bank accounting literature”(Beatty and Liao,

2014). Yet, somewhat surprisingly, relatively little is known about the exact mechanism

through which loan loss provisioning interacts with prudential regulation to affect banks’

behavior. We believe that, to better inform policy debates, it is crucial to have a solid

conceptual understanding of the role of loan loss provisioning and how it interacts with bank

capital. An important insight of our study is that relying on expected-loss models such as

CECL would curb lending only if banks’capital requirements are set independently of the

accounting standards used to provision for loan losses. But if bank regulators optimally use

balance-sheet information to tailor banks’capital requirements to the riskiness of banks’loan

portfolios, they could potentially relax capital requirements to spur lending.

Our model may be used as a springboard to study other important aspects of loan loss

provisioning that we did not capture in our environment. Banks are often criticized for

exercising a large amount of discretion in estimating and disclosing their loan losses, even

under the incurred loss model. Arguably, such discretion will only increase when it comes

to estimating expected loan losses. To the extent that banks’discretionary reporting of loan

loss provisions hides loan loss information from regulators, it may result in an additional

17The U.S. Congress recently recognized the importance of adjusting capital requirements in light of banks
implementing CECL. It has directed the U.S. Treasury Department, in consultation with bank regulators,
to study the impact of the CECL and to determine whether any changes to regulatory capital requirements
are necessary. (Maurer, 2020).
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cost of the expected loss model that we have ignored in our analysis. How such a cost of

reporting discretion may be traded against the cost and the benefit identified in our model

is an interesting avenue we leave to future research.

We have also not considered how loan loss provisioning may lead to spillovers and affect

the systemic risk of the banking industry (e.g., procyclicality of bank lending). In the current

debate, there are concerns that the incurred loss model may have contributed to procyclicality

and adopting the new expected loss model may help to mitigate procyclicality.18 Extending

our single-bank model to include multiple banks may thus shed light on the systemic impact

of loan loss provisioning, which is another interesting avenue left for future research.

18For theoretical and empirical work on provisioning and procyclicality, see Abad and Suarez (2018),
Agenor and Zilberman (2015), Bouvatier and Lepetit (2012), Dewatripont and Tirole (2012) and Gon-
charenko and Rauf (2019).
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Appendix: proofs

Proof. of Proposition 1: We first derive the threshold on asset substitution s̄1. At one

extreme, A = E (the lower bound for A),

τβ < 1 ≤
[∫ 1

1
α

sf (s|s1 = τ) ds

]
α + Pr

[
s <

1

α
|s1 = τ

]
. (39)

That is, at A = E, the bank never engages in asset substitution, i.e., s̄1 = τ . At the other

extreme of A = Ā, by Assumption 4, the bank always asset-substitutes, i.e., s̄1 = 1. In

addition, note that the left hand side of (19) is increasing at a faster speed in A than its

right hand side, i.e.,

τ (β − 1) >

[∫ 1

1
α

sf (s|s1) ds

]
(α− 1) . (40)

The inequality is by Assumption 4. Therefore, there exist some Amin > E and Amax ∈(
Amin, Ā

)
, such that: for A ∈ (Amin, Amax), s̄1 (A) ∈ (τ , 1); for A ≤ Amin, s̄1 (A) = τ ; for

A ≥ Amax, s̄1 (A) = 1. The cutoff Amax is defined such that

τ =

[∫ 1

1
α

sf (s|s1 = 1) ds

]
Amaxα− (Amax − E)

Amaxβ − (Amax − E)
+ Pr

[
s <

1

α
|s1 = 1

]
E

Amaxβ − (Amax − E)
,

(41)

The cutoff Amin is defined such that

τ =

[∫ 1

1
α

sf (s|s1 = τ) ds

]
Aminα− (Amin − E)

Aminβ − (Amin − E)
+ Pr

[
s <

1

α
|s1 = τ

]
E

Aminβ − (Amin − E)
.

(42)
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Next, we derive some comparative statics on s̄1 ∈ (τ , 1), which is defined such that

τ =

[∫ 1

1
α

sf (s|s̄1) ds

]
Aα− (A− E)

Aβ − (A− E)
+ Pr

[
s <

1

α
|s̄1

]
E

Aβ − (A− E)
, (43)

and is equivalent to

τ (Aβ − (A− E)) =

[∫ 1

1
α

sf (s|s̄1) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s̄1

]
E. (44)

Taking the derivative of (44) with respect to A, we get

τ(β − 1) =

[
∂s̄1

∂A

∫ 1

1
α

s
∂f (s|s̄1)

∂s1

ds

]
(Aα− (A− E)) (45)

+

[
∂s̄1

∂A

∫ 1
α

τ

∂f (s|s̄1)

∂s1

ds

]
E +

[∫ 1

1
α

sf (s|s̄1) ds

]
(α− 1), (46)

which is equivalent to

∂s̄1

∂A
=

τ(β − 1)−
[∫ 1

1
α
sf (s|s̄1) ds

]
(α− 1)[∫ 1

1
α
s∂f(s|s̄1)

∂s1
ds
]

(Aα− (A− E)) +
[∫ 1

α

τ
∂f(s|s̄1)
∂s1

ds
]
E
≥ 0. (47)

The numerator of ∂s̄1
∂A
is positive by Assumption 4. The denominator of ∂s̄1

∂A
is positive because

the right hand side of (44) increases in s1, i.e., a higher s1 improves the bank’s expected
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payoff from the low-risk loan. To see this, rewriting the right hand side of (44) gives that:

[∫ 1

1
α

sf (s|s̄1) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s̄1

]
E (48)

= Aα− (A− E)−
(
A− A− E

α

)
F

(
1

α
|s̄1

)
−
[∫ 1

1
α

F (s|s̄1) ds

]
(Aα− (A− E))

+F

(
1

α
|s̄1

)
E

= [Aα− (A− E)]

[
1−

∫ 1

1
α

F (s|s̄1) ds

]
−
(

1 +
1

α

)
F

(
1

α
|s̄1

)
.

The first step uses integration by parts. Taking the derivative of (44) with respect to s̄1

gives that

− [Aα− (A− E)]

[∫ 1

1
α

∂F (s|s̄1)

∂s1

ds

]
−
(

1 +
1

α

)
∂F
(

1
α
|s̄1

)
∂s1

> 0. (49)

The inequality uses the property that s1 improves the posterior distribution of s in the sense

of first-order stochastic dominance, i.e., ∂F (s|s̄1)
∂s1

< 0. Therefore, the right hand side of (44)

increases in s1, which implies that:

[∫ 1

1
α

s
∂f (s|s̄1)

∂s1

ds

]
(Aα− (A− E)) +

[∫ 1
α

τ

∂f (s|s̄1)

∂s1

ds

]
E > 0. (50)

Taking the derivative of (44) with respect to β, we get

τA =

[
∂s̄1

∂β

∫ 1

1
α

s
∂f (s|s̄1)

∂s1

ds

]
(Aα− (A− E)) +

[
∂s̄1

∂β

∫ 1
α

τ

∂f (s|s̄1)

∂s1

ds

]
E, (51)
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which is equivalent to

∂s̄1

∂β
=

τA[∫ 1
1
α
s∂f(s|s̄1)

∂s1
ds
]

(Aα− (A− E)) +
[∫ 1

α

τ
∂f(s|s̄1)
∂s1

ds
]
E
≥ 0. (52)

Finally, taking the derivative of (44) with respect to α, we get

0 =

[
∂s̄1

∂α

∫ 1

1
α

s
∂f (s|s̄1)

∂s1

ds+
1

α3
f

(
1

α
|s̄1

)]
(Aα− (A− E)) +

[∫ 1

1
α

sf (s|s̄1) ds

]
A

+

[
∂s̄1

∂α

∫ 1
α

τ

∂f (s|s̄1)

∂s1

ds− 1

α2
f

(
1

α
|s̄1

)]
E, (53)

which is equivalent to

∂s̄1

∂α
=
− 1
α3
f
(

1
α
|s̄1

)
(α− 1) (A− E)−

[∫ 1
1
α
sf (s|s̄1) ds

]
A[∫ 1

1
α
s∂f(s|s̄1)

∂s1
ds
]

(Aα− (A− E)) +
[∫ 1

α

τ
∂f(s|s̄1)
∂s1

ds
]
E
≤ 0. (54)

Proof. of Proposition 2: See the main text.

Proof. of Proposition 3: See the main text.

Proof. of Proposition 4: From the main text, for A ∈ [E,Amax), q∗IL solves

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s1

]
E

)
g(s1)ds1 (55)

−
∫ 1

s̄1(A)

τ (Aβ − (A− E)) g(s1)ds1

= C ′ (q∗IL) .
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Using the implicit function theorem,

C ′′(q∗IL)
∂q∗IL
∂A

=

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
(α− 1)− τ (β − 1)

)
g(s1)ds1

−∂s̄1

∂A

([∫ 1

1
α

sf (s|s̄1(A)) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s̄1(A)

]
E

−τ (Aβ − (A− E))

)
g(s̄1(A))

=

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
(α− 1)− τ (β − 1)

)
g(s1)ds1 (56)

≤ 0.

The second step uses the definition of s̄1 (A) in (44):

[∫ 1

1
α

sf (s|s̄1(A)) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s̄1(A)

]
E = τ (Aβ − (A− E)) . (57)

This last step uses Assumption 4:

[∫ 1

1
α

sf (s|s1) ds

]
(α− 1) < τ (β − 1) . (58)

The inequality is strict if and only if s̄1(A) < 1 (i.e., A < Amax).
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Taking the derivative of (55) with respect to α,

C ′′ (q∗IL)
∂q∗IL
∂α

(59)

=

∫ 1

s̄1(A)

∂

∂α

([∫ 1

1
α

sf (s|s1) ds

]
(Aα− (A− E)) + Pr

[
s <

1

α
|s1

]
E

)
g(s1)ds1

+
∂s̄1

∂α

(
−
[∫ 1

1
α

sf (s|s̄1) ds

]
(Aα− (A− E))− Pr

[
s <

1

α
|s̄1

]
E + τ (Aβ − (A− E))

)
g(s̄1)

=

∫ 1

s̄1(A)

[
1

α3
f

(
1

α
|s1

)
(α− 1) (A− E) +

[∫ 1

1
α

sf (s|s1) ds

]
A

]
g(s1)ds1

≥ 0.

The second step uses (57). The last inequality is strict if and only if s̄1(A) < 1.

Lastly, taking the derivative of (55) with respect to β,

C ′′ (q∗IL)
∂q∗IL
∂β

(60)

= −
∫ 1

s̄1(A)

τAg(s1)ds1

+
∂s̄1

∂β

(
−
[∫ 1

1
α

sf (s|s1) ds

]
(Aα− (A− E))− Pr

[
s <

1

α
|s1

]
E + τ (Aβ − (A− E))

)
g(s̄1)

= −
∫ 1

s̄1(A)

τAg(s1)ds1

≤ 0.

The second step uses (57). The last inequality is strict if and only if s̄1(A) < 1.

Proof. of Proposition 5: We supplement the proofs in the main text by computing the

comparative statics regarding q∗EL. For our convenience, we first reproduce the first order

51



condition (32) on q∗EL below:

C ′(q∗IL) +

∫ s̄1(A)

τ

[E − τ (Aβ − (A− E))] g (s1) ds1 = C ′(q∗EL). (61)

We first derive the comparative statics regarding A. Taking the derivative of (61) with

respect to A,

C ′′(q∗EL)
∂q∗EL
∂A

= C ′′(q∗IL)
∂q∗IL
∂A
−G (s̄1(A)) τ(β − 1) +

∂s̄1

∂A
[E − τ(Aβ − (A− E))]g(s̄1(A)) ≤ 0. (62)

Note that the first term of (62) is non-positive because from Proposition 4, ∂q
∗
IL

∂A
≤ 0. The

second term of (62) is non-positive because −τ(β − 1) < 0. Finally, the third term of (62)

is also non-positive. This is because if A ≤ Amin, from Proposition 1, s̄1 (A) = τ for all

A ≤ Amin, which makes the third term of (62) equal zero. If A > Amin, the third term of

(62) is also non-positive because ∂s̄1
∂A
≥ 0 and E − τ(Aβ − (A− E)) < 0 given (33) in the

main text. Since all the terms of (62) are non-positive, ∂q
∗
EL

∂A
≤ 0.

Next, we derive the comparative statics regarding α. Taking the derivative of (61) with

respect to α,

C ′′(q∗EL)
∂q∗EL
∂α

= C ′′(q∗IL)
∂q∗IL
∂α

+
∂s̄1

∂α
[E − τ(Aβ − (A− E))]g(s̄1(A)) ≥ 0. (63)

The last inequality uses 1) from Proposition 4, ∂q
∗
IL

∂α
≥ 0 and 2) ∂s̄1

∂α
≤ 0 such that ∂s̄1

∂α
[E −

τ(Aβ − (A− E))] ≥ 0.
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Finally, we derive the comparative statics regarding β. Taking the derivative of (61) with

respect to β,

C ′′(q∗EL)
∂q∗EL
∂β

= C ′′(q∗IL)
∂q∗IL
∂β

+
∂s̄1

∂β
[E−τ(Aβ−(A− E))]g(s̄1(A))−G (s̄1(A)) τA ≤ 0. (64)

The last inequality uses 1) from Proposition 4, ∂q
∗
IL

∂β
≤ 0 and 2) ∂s̄1

∂β
≥ 0 such that ∂s̄1

∂β
[E −

τ(Aβ − (A− E))] ≤ 0.

Proof. of Proposition 6: From (25) and (26) of the main text, the surplus is given by

WIL(A) = (1− q∗IL)Aτβ + q∗IL

(
A

∫ s̄1(A)

τ

τβg(s1)ds1

+ A

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1

)
− A,

and

WEL(A) = (1− q∗EL)Aτβ + q∗EL

(
A

∫ s̄1(A)

τ

g(s1)ds1

+ A

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1

)
− A.

Taking the difference gives that:

WEL(A)−WIL(A) (65)

= A

∫ s̄1(A)

τ

(q∗EL − q∗ILτβ) g(s1)ds1

+ (q∗EL − q∗IL)A

(∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
.
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First, consider the case that A ≥ Ae. From Proposition 4 and Proposition 5, q∗IL ≥ 0

and q∗EL = 0, where the inequality is strict if and only if A < Amax. Plugging q∗EL = 0 into

the expression of WEL(A)−WIL(A) gives that:

WEL (A)−WIL (A) (66)

= −q∗IL

(
A

∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

]
− τβ

)
g(s1)ds1

)
≤ 0.

The last step uses that τβ < 1. The inequality is strict if and only if q∗IL > 0, which holds if

and only if A < Amax.

Second, consider the case that A ≤ Amin:

WEL(A)−WIL(A) (67)

= A

∫ s̄1(A)

τ

(q∗EL − q∗ILτβ) g(s1)ds1

+ (q∗EL − q∗IL)A(

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ)

= 0. (68)

The last equality uses that, from Proposition 5, for A ≤ Amin, s̄1 = τ and q∗EL = q∗IL > 0.

Finally, consider a small neighborhood of A ∈ (Amin, Amin + ε), where ε > 0 is arbitrarily

54



small. If Pr
[
s < 1

α
|s1 = τ

]
= 1, we have

WEL(A)−WIL(A)

= WEL(Amin)−WIL(Amin) + ε lim
A→A+min

(
∂WEL

∂A
− ∂WIL

∂A

)
∝ lim

A→A+min

(
∂WEL

∂A
− ∂WIL

∂A

)
=

∂q∗EL
∂A

(
Amin

∫ s̄1

τ

g(s1)ds1 + Amin

∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − Aminτβ

)

−∂q
∗
IL

∂A

(
Amin

∫ s̄1

τ

τβg(s1)ds1 + Amin

∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1

−Aminτβ

)
+ q∗EL

(∫ s̄1

τ

g(s1)ds1 +

∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)

−q∗IL

(∫ s̄1

τ

τβg(s1)ds1 +

∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)

+q∗EL
∂s̄1

∂A
Aming(s̄1)

(
1−

([∫ 1

1
α

sf (s|s̄1) ds

]
α + Pr

[
s <

1

α
|s̄1

]))

−q∗IL
∂s̄1

∂A
Aming(s̄1)

(
τβ −

([∫ 1

1
α

sf (s|s̄1) ds

]
α + Pr

[
s <

1

α
|s̄1

]))

= Amin lim
A→A+min

(
∂q∗EL
∂A

− ∂q∗IL
∂A

)(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)

+q∗EL
∂s̄1

∂A
Aming(s̄1) (1− τβ)

= Aming(τ)
∂s̄1

∂A

(
q∗EL (1− τβ)

+
[E − τ(Aminβ − (Amin − E))]

C ′′(q∗EL)

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

))

= Aming(τ)
∂s̄1

∂A
q∗EL (1− τβ) > 0.

“∝”stands that “having the same sign as.”The second step uses WEL(Amin) = WIL(Amin).

The fourth step uses s̄1 (Amin) = τ and q∗EL (Amin) = q∗IL (Amin) . The fifth step uses that,
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from (62),

C ′′(q∗EL)
∂q∗EL
∂A
−C ′′(q∗IL)

∂q∗IL
∂A

=

∫ s̄1(A)

τ

[−τ(β−1)]g(s1)ds1+
∂s̄1

∂A
[E−τ(Aβ−(A− E))]g(s̄1(A)).

(69)

At A = Amin, this equation can be reduced into:

C ′′(q∗EL) lim
A→A+min

(
∂q∗EL
∂A

− ∂q∗IL
∂A

)
=
∂s̄1

∂A
[E − τ(Aβ − (A− E))]g(s̄1(A)). (70)

The last step uses (42):

τ =

[∫ 1

1
α

sf (s|s1 = τ) ds

]
Aminα− (Amin − E)

Aminβ − (Amin − E)
+ Pr

[
s <

1

α
|s1 = τ

]
E

Aminβ − (Amin − E)
.

(71)

If Pr
[
s < 1

α
|s1 = τ

]
= 1, τ [Aminβ − (Amin − E)] = E. Under the linear-uniform structure

of s = ws1 + (1− w) s2, Pr
[
s < 1

α
|s1 = τ

]
= 1 requires that at s1 = τ and s2 = 1,

s = wτ + (1− w) <
1

α
, (72)

which reduces into w > α−1
α−ατ .

α−1
α−ατ < 1 because ατ < βτ < 1.

Since in a small neighborhood of A ∈ (Amin, Amin + ε),WEL > WIL if Pr
[
s < 1

α
|s1 = τ

]
=

1. By continuity, there exists some thresholds
{
p̂, Â, ŝ1

}
that satisfy Amin < Â < Ae, such

that for Pr
[
s < 1

α
|s1 ≤ ŝ1

]
> p̂ and A < Â, WEL ≥ WIL. Â < Ae because at A = Ae,

WEL < WIL.
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Proof. of Proposition 7: We first give the first order condition on A∗EL:

∂WEL

∂A
= NPVEL (s̄1(A)) (73)

+q∗ELA
∂s̄1

∂A

(
1−

[∫ 1

1
α

sf (s|s̄1(A)) ds

]
α− Pr

[
s <

1

α
|s̄1(A)

])
g(s̄1(A))

+A
∂q∗EL
∂A

(∫ s̄1

τ

g(s1)ds1 +

∫ 1

s̄1

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
,

where

NPVEL (s̄1(A)) = τβ − 1 + q∗EL

(∫ s̄1(A)

τ

(1− τβ) g(s1)ds1 +

∫ 1

s̄1(A)

([∫ 1

1
α

sf (s|s1) ds

]
α

+ Pr

[
s <

1

α
|s1

]
− τβ

)
g(s1)ds1

)
. (74)

Next we derive the suffi cient conditions in Proposition 7. We first prove two preliminary

results that we will use in our future steps:

Result 1: For A ≤ Amin, WIL = WEL. In particular, limA→A−min
∂WIL

∂A
= limA→A−min

∂WEL

∂A
.

Result 1 follows directly from (67).

Result 2: limA→A−min
∂WIL

∂A
> limA→A+min

∂WIL

∂A
and limA→A−min

∂WEL

∂A
≥ limA→A+min

∂WEL

∂A
.

The first part of Result 2 holds because from (37),

lim
A→A−min

∂WIL

∂A
− lim

A→A+min

∂WIL

∂A
(75)

= q∗ILA
∂s̄1

∂A

([∫ 1

1
α

sf (s|s̄1(A)) ds

]
α + Pr

[
s <

1

α
|s̄1(A)

]
− τβ

)
g(s̄1(A)) > 0.
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The second part of Result 2 can be proved analogously. From (73),

lim
A→A−min

∂WEL

∂A
− lim

A→A+min

∂WEL

∂A
(76)

= −q∗ELA
∂s̄1

∂A

(
1−

[∫ 1

1
α

sf (s|s̄1(A)) ds

]
α− Pr

[
s <

1

α
|s̄1(A)

])
g(s̄1(A)) ≥ 0.

Given Result 1 and Result 2, we derive some suffi cient conditions for A∗EL > A∗IL and

WEL (A∗EL) > WIL (A∗IL). We proceed in three steps. In step 1, we prove that limA→A+min
∂WEL

∂A
>

0 and limA→A+min
∂WIL

∂A
< 0 is a suffi cient condition for A∗EL > A∗IL and WEL (A∗EL) >

WIL (A∗IL). In step 2 and 3, we reduce the set of conditions of limA→A+min
∂WEL

∂A
> 0 and

limA→A+min
∂WIL

∂A
< 0 into a set of conditions on β, Pr

(
s < 1

α
|s1 = τ

)
and g (τ).

Step 1: We prove that limA→A+min
∂WEL

∂A
> 0 and limA→A+min

∂WIL

∂A
< 0 is a suffi cient condi-

tion for A∗EL > A∗IL andWEL (A∗EL) > WIL (A∗IL). By Assumption 5, limA→A+min
∂WEL

∂A
> 0 im-

plies that for A ≤ Amin, ∂WEL

∂A
> 0. Therefore, A∗EL > Amin. In addition, limA→A+min

∂WIL

∂A
< 0

implies that for A > Amin, ∂WIL

∂A
< 0. Furthermore,

∂WIL

∂A
|A=A−min

=
∂WEL

∂A
|A=A−min

>
∂WEL

∂A
|A=A+min

> 0. (77)

The first equality uses Result 1 and the second inequality uses Result 2. By Assumption 5,

for A < Amin, ∂WIL

∂A
> 0. Therefore, A∗IL = Amin, which implies that A∗EL > Amin = A∗IL and

WEL (A∗EL) > WEL (Amin) = WIL (Amin) = WIL (A∗IL). The second equality uses Result 1.

Step 2: We show that, under Pr
(
s < 1

α
|s1 = τ

)
= 1, limA→A+min

∂WIL

∂A
< 0 if g (τ) is
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suffi ciently large. From (37),

lim
A→A+min

∂WIL

∂A

= NPVIL (τ)− q∗ILAmin
∂s̄1

∂A

([∫ 1

1
α

sf (s|s1 = τ) ds

]
α + Pr

[
s <

1

α
|s1 = τ

]
− τβ

)
g(τ)

+Amin
∂q∗IL
∂A

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

]
− τβ

)
g(s1)ds1

)
< NPVIL (τ)− q∗ILAmin

∂s̄1

∂A

(
1− τβ

)
g(τ)

= τβ − 1

+q∗IL

[(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
− Amin

∂s̄1

∂A
(1− τβ) g(τ)

]

< q∗IL

[(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
− Amin

∂s̄1

∂A
(1− τβ) g(τ)

]

= q∗IL

[
α

(∫ 1

1
α

sdH (s)

)
+H

(
1

α

)
− τβ − Amin

∂s̄1

∂A
(1− τβ) g(τ)

]
.

The first equality uses s̄1 (Amin) = τ . The second step uses Pr
(
s < 1

α
|s1 = τ

)
= 1 and

∂q∗IL
∂A

< 0 from (56). The third step uses (38). The fourth step uses τβ < 1. The fifth

equality uses the law of iterated expectations and recall that H (s) is the CDF of s. Note

that the term in the fifth equality is negative if

g (τ) >
α
(∫ 1

1
α
sdH (s)

)
+H

(
1
α

)
− τβ

Amin
∂s̄1
∂A

(1− τβ)

=
α
(∫ 1

1
α
sdH (s)

)
+H

(
1
α

)
− τβ

(1−τ)(1−τβ)[∫ 1
1
α
s
∂f(s|s1)
∂s1

|s1=τds
]
[α−1+(β−α)τ ]+

[∫ 1
α
τ

∂f(s|s1)
∂s1

|s1=τds
]
(β−1)τ

. (78)
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The second equality uses at Pr
(
s < 1

α
|s1 = τ

)
= 1, Amin = 1−τ

(β−1)τ
E and

∂s̄1

∂A
|A=Amin =

1

E

τ(β − 1)−
[∫ 1

1
α
sf (s|τ) ds

]
(α− 1)[∫ 1

1
α
s∂f(s|s1)

∂s1
|s1=τds

]
α−1+(β−α)τ

(β−1)τ
+
[∫ 1

α

τ
∂f(s|s1)
∂s1
|s1=τds

] (79)

=
1

E

τ(β − 1)[∫ 1
1
α
s∂f(s|s1)

∂s1
|s1=τds

]
α−1+(β−α)τ

(β−1)τ
+
[∫ 1

α

τ
∂f(s|s1)
∂s1
|s1=τds

] .

The second equality uses Pr
(
s < 1

α
|s1 = τ

)
= 1 such that

∫ 1
1
α
sf (s|τ) ds = 0. Note that the

right hand side of (78) is independent of g (τ). Therefore, there exists a threshold g such

that, under Pr
(
s < 1

α
|s1 = τ

)
= 1, limA→A+min

∂WIL

∂A
< 0 if g (τ) > g.

Step 3: We show that, under Pr
(
s < 1

α
|s1 = τ

)
= 1, limA→A+min

∂WEL

∂A
> 0 if β is suffi -

ciently small. From (73),

lim
A→A+min

∂WEL

∂A
= NPVEL (τ) + q∗ELAmin

∂s̄1

∂A

(
1−

[∫ 1

1
α

sf (s|s1 = τ) ds

]
α− Pr

[
s <

1

α
|s1 = τ

])
g(τ)

+Amin
∂q∗EL
∂A

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)

= NPVEL (τ) + Amin
∂q∗EL
∂A

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)

= τβ − 1 + q∗EL

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)

+
Amin

C ′′(q∗EL)

∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
(α− 1)− τ (β − 1)

)
g(s1)ds1

×
(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)

∝ τβ − 1 + q∗EL

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
> 0.

The first equality uses s̄1 (Amin) = τ . The second equality uses Pr
(
s < 1

α
|s1 = τ

)
= 1. The
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third equality uses s̄1 (Amin) = τ , (74), q∗EL (Amin) = q∗IL (Amin), and (56). The fourth step

uses that if β is suffi ciently small, τ (β − 1) approaches
∫ 1

τ

[∫ 1
1
α
sf (s|s1) ds

]
(α − 1)g(s1)ds1

and the term

Amin

C ′′(q∗EL)

∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
(α− 1)− τ (β − 1)

)
g(s1)ds1

×
(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
,

approaches 0. By continuity, there exists a threshold β such that if β < β, the sign of

limA→A+min
∂WEL

∂A
is determined by the sign of the expression

τβ − 1 + q∗EL

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
.

The last inequality holds because, by Assumption 6, WEL > 0 for A ≤ Amin. WEL > 0 in

turn implies that

WEL

A
= τβ − 1 + q∗EL

(∫ 1

τ

([∫ 1

1
α

sf (s|s1) ds

]
α + Pr

[
s <

1

α
|s1

])
g(s1)ds1 − τβ

)
> 0.

In sum, if Pr
(
s < 1

α
|s1 = τ

)
= 1, g (τ) > g and β < β, A∗EL > A∗IL and WEL (A∗EL) >

WIL (A∗IL). By continuity, there exists a set of thresholds
{
β, s1, p, g

}
, such that, if β < β,

Pr
(
s < 1

α
|s1 ≤ s1

)
> p, and infs1≤s1 g (s1) > g, A∗IL < A∗EL and WEL(A∗EL) > WIL(A∗IL).

Numerical analysis confirms that the set of parameters that satisfy these conditions is non-

empty.
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