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Psychophysiological Responses to Data Visualization and Visualization Effects  

on Auditors’ Judgments and Audit Quality 

 

ABSTRACT 

We conduct experiments with practicing Big 4 auditors and business students in order to 

investigate the psychophysiological responses to Big Data visualizations and the effects of 

different visualization techniques on auditor judgment and ultimately audit quality. More 

specifically, the first experiment with students examines whether visualizations can be designed 

to increase the level of a users’ arousal. Such increases in arousal have the capacity to yield 

significant benefits to the audit profession by drawing auditors’ attention to important patterns in 

data and promoting the evaluation of these patterns during evidence evaluation. Results of the first 

experiment using cognitive pupillometry and eye gaze measurement indicate that different 

visualization techniques produce significant differences in the level of arousal without interfering 

with information evaluation efficiency. The second experiment then investigates whether 

visualizations that were shown to promote higher and lower levels of arousal have differential 

effects on auditor judgments and audit quality. In addition, the second experiment investigates 

whether the reliability of the data sources underlying visualizations affect auditors’ judgments. 

Results from the second experiment indicate that visualizations that increase arousal enhance 

auditors’ ability to recognize disconfirming evidence and incorporate this evidence into their 

decisions. That is, auditors who view visualizations of disconfirming evidence that are designed 

to promote arousal recommend greater reductions to management estimates of reported revenue 

and increase their budgeted audit hours more than auditors who view visualizations that promote 

less arousal.  In addition, auditors who view visualizations that increase arousal are more likely to 

attend to the reliability of data used to create the visualizations. Overall, the experiments reveal 

that understanding the root causes of different visualization techniques on arousal and auditor 

judgment present multiple opportunities to enhance audit quality. 
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Psychophysiological Responses to Data Visualization and Visualization Effects  

on Auditors’ Judgments and Audit Quality 

 

I. INTRODUCTION 

In recent years, the largest accounting firms have devoted significant resources to 

developing sophisticated analytical tools that can leverage the value of emerging data sources such 

as Big Data.  New data sources are changing the way auditors obtain and assess audit evidence 

and appear to have significant capacity to improve audit quality (Rose, Rose, Sanderson, and 

Thibodeau 2017; Brown-Liburd, Issa and Lombardi 2015; Vasarhelyi, Kogan, and Tuttle 2015). 

Despite the advances that have been made regarding the use of improved analytical tools and Big 

Data in the financial statement auditing process, deployments of innovations in the field, such as 

the use of visualizations of Big Data, have been slow to materialize. There appears to be reluctance 

among partners on public company audits to fully integrate analytics of emerging data sources into 

the auditing process or include visualizations of Big Data in the audit workpapers (Gepp, 

Linnenluecke, Terrence, and Smith 2018). Much of this reluctance stems from a lack of 

understanding of the potential effects of data visualizations on auditor judgment and beliefs that 

current PCAOB regulation does not require data visualization or the use of emerging data sources 

(Franzel, Rose, Thibodeau, and Williams 2018). Therefore, to inform audit firms and regulators of 

the potential costs and benefits of using visualizations of Big Data as audit evidence, it is critical 

for research to examine how visualizations of Big Data affect auditor judgment and audit quality. 

Research into the effects of visualizations of Big Data on audit quality is also essential 

because auditors are required to employ a balanced evaluation of evidence that both supports and 

contradicts management’s assertions (PCAOB 2010a; 2010b). Contrary to regulatory requirements 
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to document evidence that contradicts management assertions, prior literature finds that auditors 

often fail to adequately consider disconfirming evidence in their judgment and decision-making 

processes (e.g., Cloyd and Spilker 1999; Kadous and Magro 2001; Asare and Wright 2003; Earley, 

Hoffman, and Joe 2008; Thayer 2011). Because third-party data sources are potentially more likely 

than client-provided data to yield evidence that contradicts managements’ assertions, Big Data 

visualizations have the potential to and are likely to become a key source of disconfirming 

evidence (Rose et al. 2017).  

Before audit firms can employ Big Data visualizations as a customary source of 

disconfirming evidence, however, it is critical to understand how different types of visualizations 

could lead to different auditor judgments and how different types of visualizations could affect 

audit quality.  In this study, we employ psychophysiological measures of eye gaze and cognitive 

pupillometry to determine how different visualizations of the same data affect the arousal levels 

of visualization users.  By investigating the root psychophysiological responses to visualization 

techniques, we are able to examine core constructs of visualization design that have the capacity 

to affect auditor judgment and audit quality. We then investigate the effects of visualizations that 

increase arousal on auditor judgment and audit quality. Thus, in one study, we are able to provide 

researchers, audit firms, and regulators with a theory-driven examination of the potential effects 

of new methods of evidence evaluation on auditor judgment and audit quality.   

In the first experiment, we measure psychophysiological responses to different 

visualization techniques of Big Data that are employed as audit evidence. The results of the first 

experiment with business students indicate that different visualization techniques produce 

significantly different levels of cognitive and emotional arousal. Specifically, we find increased 

pupil dilation in response to Big Data that is presented in a Word Cloud format, relative to a Bar 
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Graph format. These differences in pupillary response are indicative of increased cognitive and 

emotional arousal (e.g., Kahneman and Beatty 1966; Stanners, Coulter, Sweet, and Murphy 1979; 

Verney, Granholm, and Dionisio 2001; Hayhoe and Ballard 2005; Nuthmann and van der Meer 

2005; Wedel and Pieters 2008; Rayner 2009; Day 2010; Reutskaja et al. 2011), which translate 

into increased top-down cognitive processing control, and associated with improved attention, 

executive functioning (i.e., higher order cognitive skills) and memory encoding (e.g., Van 

Steenbergen and Band 2013; Querino, dos Santos, Ginani, Nicolau, Miranda, Romano-Silva, and 

Malloy-Diniz 2015).  Importantly, the different visualization formats do not increase the time 

required to analyze the visualizations, and there are no significant differences in gaze times 

between the formats. Similarly, we find no evidence of differences in the number of gazes (eye 

fixations) on the visualizations, indicating that the potential benefits of increased arousal can be 

achieved without causing significant reductions in the efficiency of evidence evaluation. 

The second experiment involves a 2 X 2 between-participant experiment using 120 auditor 

participants from two Big 4 firms, which employs the same visualizations that were evaluated for 

their effects on arousal in the first experiment. We manipulate two constructs related to 

visualization of data: Arousal (less versus more) and data Reliability (less versus more). The 

experiment includes a manipulation of data reliability because data from external sources such as 

Big Data are generally more challenging to verify than client-provided data. That is, Big Data 

sources are often easily manipulated or hacked, and such alterations are difficult to detect 

(Appelbaum 2016; Nearon 2005). This is in stark contrast to the prevailing view that audit evidence 

obtained from sources external to the client can be more reliable than evidence obtained from the 

client. As a result, auditors may over-rely on unreliable data when visualizations are designed to 
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promote high levels of arousal, and it is therefore important to examine how visualization design 

and data reliability work together to affect auditor judgment and audit quality.  

The results of the second experiment indicate that when there is evidence to disconfirm a 

management assertion, visualizations that promote higher levels of arousal, relative to less arousal, 

cause auditors to pay more attention to disconfirming audit evidence, to perceive that a 

misstatement at the overall financial statement level is more likely, and to increase planned 

substantive testing hours. Thus, in line with existing literature, visualizations that are designed to 

increase arousal will increase the likelihood that auditors will recognize disconfirming audit 

evidence and incorporate this evidence into their decision-making processes. There is no evidence 

of a main effect of data reliability on auditor judgments, which suggests there are opportunities to 

enhance auditor training in this area. However, when visualizations promote higher levels of 

arousal, auditors are more likely to consider the reliability of the underlying data when they are 

evaluating specific accounts related to the Big Data visualization. Overall, these results indicate 

that designing visualizations to increase arousal offers multiple and meaningful benefits to audit 

firms.  

Our study is important for several reasons. First, this study builds on the evolving literature 

on Big Data visualization and auditor consideration of disconfirming evidence (e.g., Rose et al. 

2017; Hackenbrack and Nelson 1996; Kadous, Kennedy and Peecher 2003; Kadous, Magro and 

Spilker 2008; Earley, Hoffman, and Joe 2008) by providing evidence that the increased arousal 

improves auditor consideration of disconfirming evidence. Second, we find that auditors attend 

more to the reliability of the underlying data used to generate Big Data visualizations when the 

visualization promotes higher levels of arousal. Given that the issue of reliability is critical to the 

potential use of Big Data in the audit process (Brown-Liburd, Issa, and Lombardi 2015; 
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Vasarhelyi, Kogan, and Tuttle 2015), our study is timely and addresses an issue that is important 

to practitioners as they consider the effects of Big Data visualizations on the audit process and 

standard setters as they consider changes to audit standards in light of advanced analytical tools 

and Big Data (Franzel et al. 2018). Finally, with regards to developing a deeper understanding of 

the role of Big Data and visualizations in the audit process, we provide an approach to evaluate 

the root psychophysiological responses to different types of visualizations that can be applied 

before field deployment of new methods of data analysis and evidence presentation.   

II. BACKGROUND AND HYPOTHESES DEVELOPMENT 

Big Data and Evidence Evaluation in Financial Statement Auditing 

Big Data is revolutionizing the way auditors gather and evaluate audit evidence and make 

auditing decisions (Rose, et al. 2017; Brown-Liburd et al. 2015; Vasarhelyi et al. 2015). Whereas 

auditors typically gather traditional audit evidence by examining historical accounting records 

from client sources, making observations or obtaining confirmations from third parties, Big Data 

offers auditors an alternate source of evidence that is real-time, electronic, voluminous, and from 

a wide variety of sources (Yoon, Hoogduin, and Zhang 2015). Using Big Data evidence as part of 

the financial statement audit allows auditors to access data from nontraditional sources to 

corroborate management assertions and employ a more holistic approach to evidence evaluation 

with goals of decreasing the probability of material misstatement and audit failure (Yoon et al. 

2015).  For example, where a client’s sales forecasts are not available or are of poor quality, 

auditors can use Big Data from social networks, news articles or product discussion forums to 

obtain an understanding of the client’s sales trends (Yoon et al. 2015). Similarly, analysis of email-

related Big Data can assist auditors in understanding employee sentiment and motivations as 

auditors seek to detect evidence of fraudulent behavior (Yoon et al. 2015; Holton 2009). 
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Compared with traditional audit evidence, Appelbaum (2016) indicates that the provenance 

of Big Data from external or third-party (non-client) sources is often difficult to verify. Digital 

data can be easily altered, and the alterations may be undetectable without examination of the 

actual underlying data files and the controls surrounding the access and storage of such data 

(Appelbaum 2016; Nearon 2005). Consequently, Big Data from sources which are external to the 

client versus Big Data that are generated within the client (e.g., social media sources versus client 

emails, respectively), would likely be more difficult for auditors to verify as they are not able to 

examine the corresponding data logs and reliability controls (Appelbaum 2016). However, there 

are currently no studies that investigate auditors’ consideration of the reliability of Big Data 

sources or the potential effects of such consideration on their professional judgments. This study 

fills this gap in the literature by investigating how auditors evaluate Big Data from differentially 

reliable sources and assimilate this evidence into their judgments and decisions.  

Auditing standards require auditors to employ a well-balanced evaluation of evidential 

matter that both corroborates and contradicts management’s representations and financial 

statement assertions (e.g., PCAOB 2010a, AS No. 1105). Despite this mandate, research finds that 

auditors often fail to adequately consider contradictory or disconfirming evidence (e.g., Asare and 

Wright 2003; Earley, Hoffman and Joe 2008). Specifically, Asare and Wright (2003) and Earley 

et al. (2008) examine auditors’ decision processes and find similar underweighting effects when 

auditors evaluate disconfirming evidence. However, Earley et al. (2008) also find that auditors’ 

underweighting of disconfirming evidence is unintentional and that restructuring the task can help 

to mitigate this effect. Building on these prior studies, we extend the literature by investigating 

another potential factor that can mitigate auditor inattention to disconfirming audit evidence. Using 

a context that features Big Data visualizations as evidential matter, we examine whether the level 
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of arousal (either cognitive or emotional) caused by the design of evidential matter can improve 

auditors’ attention to and integration of disconfirming evidence into their judgment and decision-

making process.   

Psychophysiological Responses to Visualizations of Big Data 

In the context of this study, arousal is regarded as the psychophysiological response to Big 

Data visualizations that is particularly relevant for understanding the potential effects of 

visualization design choices on auditor judgment. Being able to objectively measure the level of 

arousal is important because arousal levels significantly affect individuals’ responses to stimuli, 

intensity of attention, and effort intensity (Kahneman 1973; Howells, Stein and Russell 2010). 

Without arousal, effort is not directed towards understanding and interpreting external stimuli 

(Howells et al. 2010; Kahneman 1973; Sirois and Brisson 2014; Mathôt et al. 2015). Thus, arousal 

captures multiple dimensions of the effects of visual stimuli on decision-makers, and arousal is 

predictive of the amount of effort, intensity of effort, and intensity of attention that is associated 

with a stimulus. The two main forms of arousal are cognitive arousal and emotional arousal. 

Cognitive arousal levels can be effectively measured with cognitive pupillometry (Hayhoe 

and Ballard 2005; Wedel and Pieters 2008; Rayner 2009; Day 2010; Reutskaja et al., 2011). 

Cognitive pupillometry involves measurement of pupil dilation in response to visual stimuli (Sirois 

and Brisson 2014). Pupil dilation reveals arousal and the level of cognitive resources that an 

individual allocates to a stimulus or task (Kahneman and Beatty 1966; Nuthmann and van der 

Meer 2005; Stanners, Coulter, Sweet, and Murphy 1979; van der Meer et al. 2010; Verney, 

Granholm, and Dionisio 2001). By comparing changes in pupil dilation in response to a stimulus 

compared to a baseline period, pupillometry reveals the arousal created by a visual stimulus (Sirois 

and Brisson 2014; van der Wel and Steenbergen 2018). Pupillary responses also reveal emotional 
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arousal to visual stimuli, and both positive and negative emotional reactions result in more pupil 

dilation relative to neutral stimuli (Partala and Surakka 2002; Bradley, Miccoli Escrig and Lang 

2008).1   

Given the potential importance of arousal on decision-making processes, the purpose of 

our first experiment is to examine the effects of different visualization formats for the same 

underlying data on levels of arousal, and we then employ these findings to test the effects of 

different arousal levels on practicing auditors’ judgments and, ultimately, audit quality.   

Effects of Arousal Levels Caused by Visualizations on Auditor Decision Making 

Given the volume and variety of Big Data, sophisticated analytical approaches such as the 

use of data visualizations are required to effectively analyze Big Data. Visualizations provide 

spatial summarization and comparison of data and help individuals to assimilate and interpret data 

more easily (Yoon, Hoogduin and Zhang 2015; Wright 1995; Benbasat and Dexter 1986). The 

types of visualizations used to conceptualize data have evolved from conventional line, pie and 

bar charts to more sophisticated word clouds and network, arc, and alluvial diagrams (Duke 

University Library 2018; Yoon, Hoogduin and Zhang 2015). Recent research finds that auditors 

can fail to detect even simple patterns in Big Data visualizations (Rose et al. 2017), suggesting that 

visualizations need to be designed to facilitate auditors’ pattern recognition and attention to 

evidential matter that disconfirms a management representation. 

While there are endless formats that can be used to visualize data, the change in arousal 

levels created by presentation formats are known to increase individuals’ cognitive processing and 

encoding of the information. Increased pupillary response, for example, is related to increased 

                                                           
1 Pupil dilation does not, however, reveal emotional valence, also known as hedonic valence (Bradley, Miccoli, 

Escrig, and Lang 2008). 
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levels of cognitive processing (e.g., van Steenbergen and Band 2013; Querino, dos Santos, Ginani, 

Nicolau, Miranda, Romano-Silva, and Malloy-Diniz 2015). The literature has also shown that 

individuals are better able to cognitively process visual stimuli that promote higher levels of 

arousal, thereby allowing individuals to better interpret and incorporate related information into 

their decision-making processes (Keller and Block 1997; McGill and Anand 1989; Shedler and 

Manis 1986). Finally, the literature finds that higher levels of arousal caused by visual stimuli are 

associated with better storage of information in memory (e.g., Shedler and Manis 1986; Goldinger 

and Papesh 2012; Kucewicz, Dolezal, Kremen, Berry, Miller, Magee, Fabian and Worrell 2018), 

which facilitates greater recall and cognitive elaboration and increases the influence of displays on 

subsequent decision making (McGill and Anand 1989; MacLeod and Campbell 1992; Keller and 

Block 1997). 

We extrapolate well-rooted findings from the psychology and neuropsychology literatures 

and expect that auditors will similarly increase cognitive processing and encoding of information 

that is presented in formats that increase arousal. Prior accounting literature has established that 

auditors are susceptible to a wide range of cognitive effects found in the psychology literature 

(e.g., Shanteau 1989; Griffith, Kadous, and Young 2015). We expect that auditors who view Big 

Data visualizations that promote more arousal, relative to less arousal, will be more likely to 

recognize and attend to disconfirming evidence in the Big Data visualizations. As a result of 

attending to evidence that disconfirms management’s assertions, auditors who view visualizations 

that increase arousal will be more skeptical of management’s reporting and will increase 

subsequent audit testing more than when they view visualizations that promote less arousal.  

H1a:  Auditors who view Big Data visualizations that promote more arousal and 

disconfirm a management representation will assess more financial misstatement 

than will auditors who view Big Data visualizations that promote less arousal.   
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H1b:  Auditors who view Big Data visualizations that promote more arousal and 

disconfirm a management representation will increase audit hours more than will 

auditors who view Big Data visualizations that promote less arousal. 

 

 

Audit Evidence Reliability 

AS No. 1105 (PCAOB 2010a) states that when evidence from “one source is inconsistent 

with that obtained from another,” and where the auditor has concerns about the reliability of the 

audit evidence, the auditor should consider the effects this evidence has on other aspects of the 

audit (Auditing Standard No. 1105 ¶29, PCAOB 2010a). This regulation suggests that auditors 

should carefully evaluate the reliability of the evidence they use in forming judgments and should 

consider the related effects of inconsistent evidence on their overall decision process. Prior 

research using more traditional evidence settings finds that in situations of increased risk of 

misstatement, auditors appropriately consider the audit implications of disconfirming evidence and 

adjust their decision making accordingly (e.g., Hackenbrack and Nelson 1996; Kadous, Kennedy 

and Peecher 2003; Kadous, Magro and Spilker 2008). However, there is currently no research that 

has examined whether auditors consider the reliability of information when audit evidence is in 

the form of Big Data visualizations. 

The reliability of audit evidence is of critical importance to the quality of the audit process. 

Reliability pertains to the “nature and source of the evidence and the circumstances under which 

it is obtained” (Auditing Standard [AS] No. 1105 ¶8, PCAOB 2010a). While AS No. 1105 

indicates that auditors are not expected to be authentication experts, they should use professional 

judgment to evaluate the reliability of audit evidence regardless of whether the evidence is 

generated from internal or external sources, and without regard to the format. Inappropriate 

weighting of unreliable evidence can compromise audit efficiency and effectiveness. 
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Overweighting of unreliable evidence can lead auditors to under-audit just as under-weighting can 

lead to over-auditing (Hirst 1994).  

Consistent with the prescriptions in auditing standards, most prior auditing research 

indicates that auditors consider evidence reliability in light of its source (e.g., Knechel and Messier 

1990; Hirst 1994; Reimers and Fennema 1999; Tan and Jamal 2001; Kadous, Leiby and Peecher 

2013). Knechel and Messier (1990) find that auditors elect to review more reliable evidence, and 

they revise their judgments more when they review more reliable evidence. Hirst (1994) examines 

auditors’ consideration of evidence from a specialist-prepared inventory report and finds that 

auditors consider evidence from a more trustworthy source to be more reliable than evidence from 

a less trustworthy source. Similarly, Reimers and Fennema (1999) find that reviewers are sensitive 

to the perceived trustworthiness of the evidence source. In that spirit, research also demonstrates 

that auditors evaluate memos more favorably when they are prepared by more competent and 

reliable audit managers (Tan and Jamal 2001), and auditors place greater weight on advice received 

from advisors perceived to be more competent (Kadous, Leiby, and Peecher 2013).  

There are also studies, however, which find that auditors can fail to consider evidence 

reliability when evaluating audit evidence (e.g., Joyce and Biddle 1981; Jenkins and Haynes 2003). 

Given that evaluation of Big Data visualizations involves different decision processes than more 

traditional evidence evaluation tasks (i.e., examination of graphics rather than review of 

calculations or financial data), and auditors often never see the data underlying visualizations due 

to data complexity and volume, auditors may fail to adequately attend to the reliability of the data 

sources and integrate reliability considerations into their decision making.  While we expect 

auditors to be less accepting of evidence when that evidence is from a source of lower reliability, 

the effects of Big Data visualizations on auditors’ attention to data reliability remains unknown.  
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H2a: Auditors who view Big Data visualizations that disconfirm a management 

representation and that were acquired from more reliable evidence sources will 

assess more financial misstatement than will auditors who view visualizations of Big 

Data acquired from less reliable evidence sources. 

 

 

H2b: Auditors who view visualizations of Big Data that disconfirm a management 

representation and that were acquired from more reliable evidence sources will 

increase audit hours more than will auditors who view visualizations of Big Data 

acquired from less reliable evidence sources. 

 

Level of Arousal and Auditors’ Evidence Reliability Evaluations 

The research in neuropsychology and psychology described in the development of H1 finds 

that visualizations that increase arousal have more influence on decision makers and increase 

individuals’ processing and storage of the information presented (e.g., Shedler and Manis 1986; 

Goldinger and Papesh 2012; van Steenbergen and Band 2013; Querino, dos Santos, Ginani, 

Nicolau, Miranda, Romano-Silva, and Malloy-Diniz 2015; Kucewicz, Dolezal, Kremen, Berry, 

Miller, Magee, Fabian and Worrell 2018). In turn, increased processing and storage results in 

improved recall and greater cognitive elaboration (Hastie and Park 1986; MacLeod and Campbell 

1992; Hertwig, Pachur, and Kurzenhauser 2005). MacLeod and Campbell (1992) find that 

information that is more accessible in memory has a greater influence on individuals’ decisions 

and that these effects are quite significant. Hertwig, Pachur and Kurzenhauser (2005) also examine 

accessibility of recollections and find that increased recollections translate to more accurate 

estimates and risk frequencies. These findings all suggest that visualizations that increase arousal 

will improve auditors’ encoding of evidence into memory and will allow them to better recall and 

process this information when making decisions.  Overall, auditors should attend more to Big Data 

visualizations of disconfirming evidence when these visualizations promote higher levels of 

arousal (either emotional or cognitive), and we propose that increased arousal also has the capacity 

to influence their evaluations of evidence reliability. 
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Given the effects of arousal on attention to information, memory and subsequent cognitive 

processing, we propose that auditors who review Big Data visualizations that promote higher 

levels of arousal will be more likely to consider the reliability of evidence than will auditors who 

view Big Data visualizations that promote lower levels of arousal. Specifically, we expect that 

auditors will pay more attention to the source of the data underlying the visualization when the 

visualization promotes more arousal, thereby allowing them to better discriminate against less 

reliable data sources in their audit judgments. Thus, data reliability will have more influence on 

auditors’ judgments when Big Data visualizations lead to higher levels of arousal, relative to when 

visualizations lead to lower levels of arousal.   

H3:   Data reliability will have more influence on auditors’ assessments of the likelihood 

of management misrepresentations when auditors view Big Data visualizations that 

promote more, versus less arousal. 

 

III. DESIGN - EXPERIMENT ONE 

The first experiment involves assessing the effects of different visualization techniques on 

arousal and effort, and this experiment employs psychophysiological measures based upon 

pupillometry and eye tracking. 

Participants 

Seventy-four students (62.2% female, 37.8% male) voluntarily participated in this study as 

part of their accounting information systems course2. Their recruitment was guided via a 

Department of Accounting student subject pool at a major Australian university, and the project 

was approved by the university’s Human Research Ethics Committee. As an incentive, students 

received bonus credit in their course for participating in the experiment. The same bonus is applied 

                                                           
2 This course covers risk, internal control, financial modeling, and visualization of financial and non-financial data 

with regards to managerial decision-making.  
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for participating in any experiment in the department’s pool or for working on an alternative 

research participation task. The average age of the participants was 20.72 years (SD = 1.29), 

ranging from 18 to 25 years. On average, the participants had 0.68 years (SD = 0.81) of 

professional business experience. Approximately eight percent (8.1%) of the participants had 

financial statement auditing experience. All participants had corrected-to-normal vision. 

Design  

The experiment employed a within-participant design. Specifically, two experimental 

treatments were presented to the participants while the order of presentation was randomly 

alternated. The treatment was the Visualization Type used to display information about employee 

sentiment toward their employer, which was varied across two conditions (i.e. Word Cloud vs. Bar 

Graph). The visualizations are presented in Appendix I.  

We expect that word cloud formats will increase arousal levels relative to bar graphs due to 

higher levels of vividness and emotional effects. The psychology literature indicates that more 

vivid visual displays attract more attention because they are more emotionally interesting and 

imagery provoking (McGill and Anand 1989). The word cloud display reveal more about specific 

emotional responses (i.e., more than valence alone) and are more imagery provoking than are bar 

graphs. In order to intentionally bias against our expectations that word clouds promote higher 

levels of arousal, we designed the Bar Graph to contain a more complex visual representation with 

more points of interest, which would be expected to produce stronger pupillary responses and 

fixation counts relative to the word cloud. Stronger responses to the Bar Graph could only be offset 

by pupillary responses to the word cloud if the word cloud format produces higher levels of 

emotional and cognitive arousal. Similarly, we also provided additional information in the Bar 

Graph (i.e., information about the time series of sentiment that indicates persistent negative 
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valence) in order to further bias against our expectations and increase the potential for negative 

emotional arousal. Again, this design choice is expected to increase pupillary response, fixation 

count and fixation duration for the Bar Graph. Thus, if we find that pupillary responses are stronger 

for the Word Cloud, we have high confidence that a greater cognitive and/or emotional arousal is 

produced by a Word Cloud format relative to a Bar Graph format. 

Dependent Variable 

The visualizations, which were presented sequentially on two separate screens, formed Areas 

of Interest (hereafter AOIs), which were used to calculate measures of arousal and visual attention, 

including pupillary dilation, fixation duration, and fixation count. The three dependent variables 

(DVs) used in this study represent individual psychophysiological responses observed while 

attending to the different visualizations of sentiment data. The first DV, Pupillary Response, is a 

continuous proportional variable, which reflects an individual’s percentage change between (1) 

pupil dilation or constriction in response to attending to either the world cloud or Bar Graph AOI 

and (2) the baseline pupil diameter, calculated as the mean pupil dilation level observed while 

attending both AOIs by an individual. Using an individual’s mean response while attending to both 

AOIs as a baseline provides a conservative and highly reliable measure of change associated with 

attending to each individual AOI, while also making it possible to control for individual differences 

in pupil size.  In recent reviews of the experimental cognitive pupillometry literature, increased 

proportional pupillary response is associated with higher levels of cognitive and emotional arousal, 

as well as attentional effort (Sirois and Brisson, 2014; van der Wel and van Steenbergen 2018). 
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Using this measure, the visualization that results in a larger increase in proportional pupillary 

response is the visualization that produces higher levels of arousal.  

The remaining two DVs reflect characteristics of participants’ visual attention and take into 

consideration either the number or duration of their fixations on each of the two visualizations (i.e., 

AOIs). The second DV, Fixation Count, is measured using eye tracking technology and represents 

the number of times the participant fixates on an AOI. A fixation occurs when the eyes stay focused 

on a single location on the screen of the eye-tracking device (used for presenting all experimental 

materials) longer than a particular time threshold (Holmqvist et al. 2011). As discussed in more 

detail in the Materials and Apparatus section, a fixation is recorded when participants fixate at 

least 60ms on a particular spot on the screen. Fixation Count is among the most widely used 

measures in eye tracking research (Holmqvist et al. 2011) and has recently been applied in 

accounting research (Fehrenbacher, Schulz and Rotaru 2018). 

Finally, the third DV, Fixation Duration, is another commonly used eye tracking measure 

that has been adopted in the accounting literature (Chen, Jermias, and Panggabean 2016) which 

measures the length of time of fixation on an AOI. Fixation Duration is strongly associated with 

the fixation count measure (Holmqvist et al. 2011). This measure made it possible to investigate 

whether one of the visualizations is associated with more effort duration than the other 

visualization. We employ the fixation measures to determine whether the two visualizations 

produce different levels of attention and time spent analyzing the visualization details. 

Materials and Apparatus 

Decision Case 

The sentiment data presented to the participants formed part of the hypothetical scenario in 

which participants were asked to assume that they were evaluating a claim made by a company (in 
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the scenario presented, the company was referred to as Absolute Solutions Agency Inc., or 

Absolute). The participants were provided with a brief outline of the company’s business activity 

and one of its key performance indicators (namely, employee turnover). The participants read 

information about the performance estimates of the company’s management, after which they were 

presented with two visualizations of independently collected data from social media web sites. The 

two visualizations (Word Cloud versus Bar Graph) served as the treatment conditions, and we 

were interested in determining the level of arousal created by each visualization type. The 

information communicated via the two visualizations disconfirmed the highly positive sentiment 

data provided by the company’s management.  

Psychophysiological Apparatus 

Eye movements were recorded using a table-mounted eye tracking system (Tobii TX300) 

with a temporal resolution of 300 Hertz (Hz) and a screen resolution of 1920 x 1080 pixels. See 

Appendix II for a more complete overview of technical specifications of the eye tracking 

measurements conducted in this study. The average viewing distance was 65 cm from the screen 

(range: 50-80 cm), binocular accuracy was 0.4° and precision 0.14°.3  Fixations were computed 

using the velocity-based I-VT algorithm (Komogortsev et al. 2010). To define fixations, a rather 

conservative 60ms threshold was selected, denoting that any fixation below 60ms threshold was 

considered as a saccade (a rapid movement of the eye between fixation points) and was not 

included in the analysis. 

The experiment was conducted in a light-controlled, dimly lit booth. Participants sat on 

height-adjustable chairs with their head supported by a height-adjustable forehead and chin rest 

                                                           
3 The Tobii TX300 infrared system has precision of 0.14 degrees and accuracy of 0.4 degrees. For more detailed 

product specifications, please refer to http://www.tobiipro.com/product-listing/tobii-pro-tx300/ 
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(Heavy Duty Chin Rest with Clamps from Richmond Products, Inc.). At the beginning of the 

experiment, the eye tracker was calibrated using a nine-point fixation technique, which is the most 

rigorous calibration technique for the device used. This calibration adjusts for participants’ 

individual differences in eye characteristics and their seating position.  

Procedure  

At the beginning of the experimental session, participants sat in front of the TobiiTX300 

eye tracking system, and a 9-point calibration procedure was performed as described in the 

Materials and Apparatus section and in Appendix II. The participants were randomly assigned to 

one of the two visual order representation conditions (either Word Cloud first or Bar Graph first), 

upon which they were presented with the background information about the case. On the page 

where the participants were presented with the background information about the hypothetical case 

(see the Decision Case section), the participants were reminded that they could spend as much 

time as needed to read and comprehend the instructions and that once they proceeded to the next 

page, this information would no longer be available to them. Upon pressing the space bar key, the 

participants were presented with the first visualization, which was time-limited for 90 seconds. In 

the instructions, the participants were told that this page will be presented to them during a specific 

amount of time, upon which a new page will automatically appear. The two visualizations were 

administered in consecutive order for the duration of 90 seconds each. After this, the participants 

responded to a brief post-experimental questionnaire where we collected demographic 

information. 

IV. RESULTS AND ANALYSES – EXPERIMENT ONE 

 The first analysis employs cognitive pupillometry to evaluate the effects of the Word Cloud 

and the Bar Graph on arousal levels.  Table 1 presents the results of a repeated-measures ANCOVA 
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where the within-participant measures are the pupil dilation ratios for the Bar Graph and Word 

Cloud, and a covariate is included to control for the order of presentation of the two visualizations.  

After controlling for order, there is a significant effect of visualization type on pupil dilation (F = 

120.52, p < 0.001), and the dilation ratio is higher for the Word Cloud (1.023) than for the Bar 

Graph (0.979).  Thus, the results indicate that the Word Cloud causes significantly higher levels 

of arousal than does the Bar Graph.  

[Insert Table 1 about here] 

 We next analyze eye tracking data in order to determine whether participants spend more 

time examining either visualization type or analyze more specific features of either visualization 

type. For both analyses, we control for the order of presentation by including order as a covariate.  

Results for the two eye-tracking DVs are presented in Table 2.  There are no significant differences 

in either Fixation Count (p = 0.315) or Fixation Duration (p = 0.334) between the Word Cloud 

and the Bar Graph.  Thus, while the Word Cloud creates higher levels of arousal than does the Bar 

Graph, users of these visualizations spend approximately the same amount of time analyzing the 

visualizations and evaluate similar numbers of features.  These results indicate that increases in 

arousal can be achieved without increasing the time demands needed to analyze the visualizations, 

which is favorable news for the potential to increase arousal while maintaining audit efficiency. 

[Insert Table 2 about here] 

V. DESIGN - EXPERIMENT TWO 

Revenue misstatement is always a significant risk and concern for auditors during the 

financial statement audit process. In fact, Auditing Standard No. 2110 explicitly emphasizes that 

auditors should design audit procedures to detect “unusual or unexpected relationships involving 

revenue accounts that might indicate a material misstatement” (PCAOB 2010b). In addition, 
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research consistently finds that revenue misstatement is a significant audit risk factor and one of 

the leading causes of sanctions and the issuance of Accounting and Auditing Enforcement Releases 

(AAERs) by the U.S. Securities and Exchange Commission (e.g., Dechow, Ge, Larson, and Sloan 

2011; Marquardt and Wiedman 2004). We examine how arousal levels of visualizations and the 

source of Big Data evidence affect auditors’ evaluation of audit evidence and their subsequent 

judgments within a contemporary revenue recognition context.  

Participants 

 We recruited auditors from two Big 4 public accounting firms. Participants completed the 

instrument during firm training sessions, and multiple authors attended the training sessions to 

ensure appropriate administration of the experiment. One hundred and forty-three auditors 

completed the experiment.  Of these participants, 23 provided responses that were outside the 

possible ranges of the questions (e.g., above total possible revenues), indicating that these 

participants failed to attend to the case. Consequently, we do not include these participants in our 

analyses resulting in a final sample of 120 auditors. Table 3 presents the descriptive statistics for 

these participants. Participants had an average of 2.7 years of auditing experience, 2.0 years of 

experience conducting analytical reviews, and 59% were male. 

[Insert Table 3 about here] 

Task Description and Experimental Procedures 

The experimental procedures are depicted in Figure 1. Participants read a hypothetical case 

describing a publicly traded professional services audit client company that provides management 

services (e.g., human resources, accounting and administration, and sales and marketing). The case 

begins with background information about the client. Historically, the audit client provided 

services only to not-for-profit entities but extended service offerings to for-profit entities during 
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the fourth quarter of the current year under audit. The case elaborates that the audit client earns 

revenue primarily from management fees charged for these professional services. The case then 

presents participants with summary results of third quarter and fiscal year-end financial reporting 

for the current year and the prior year. Reported results include revenue, cost of services, gross 

margin and gross margin percentage. In addition, year-end reporting (i.e., revenue, cost of sales, 

etc.) for the current year is also broken down for each of the two divisions – not-for-profit and for-

profit. The reporting shows a significant increase in revenue over the two years, which 

management attributes to the recent service expansion into the for-profit sector.   

Participants are then told that the manager on the audit requests that they review revenue 

related to the audit client’s sole contract recorded in the for-profit division during Q4. In this 

contract, the audit client provides three management service offerings. As a provision of the 

contract, the audit client receives a standard quarterly fee and can earn performance incentive 

bonuses if certain criteria are satisfied. Of particular interest in the case, the audit client can earn a 

performance incentive bonus for human resources services if the customer’s employee turnover is 

low (i.e., below an established threshold) at the end of each quarter. Although the customer 

provides audited employee turnover information four months after quarter end, due to financial 

reporting time constraints, the audit client estimated the maximum Q4 incentive bonus for human 

resource services at year-end.   

There are five data visualizations included in the experimental instrument. We use 

visualization types with which our auditor participants are familiar to reduce familiarity effects. In 

addition, our participants have previously received training on the use of the graphical displays 

used in the experiment. Participants are presented with data analytic visualizations related to the 

customer’s employees as well as the audit client’s performance relative to other competitors in the 
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industry. The case deliberately presents visualizations that are informative as well as uninformative 

with regards to the revenue and human resources performance bonus recognized in Q4. The first 

visualization is uninformative and presents weekly hashtag analysis that compares the number of 

social media mentions of the audit client to that of their competitors. The second and third 

visualizations are informative with respect to the performance bonus revenue. The second 

visualization reports the results of the customer’s employee engagement survey that was 

administered by the client during Q3.  This visualization suggests positive employee morale and 

supports the audit client’s expectation of low employee turnover, which lead to the recording of 

the entire performance incentive bonus at year-end.  

The third visualization is manipulated between conditions, and provides disconfirming 

evidence suggesting poor employee morale.  This visualization suggests the possibility of high 

employee turnover and inappropriate recording of the performance incentive bonus at year-end. 

Using the findings from the first experiment, the manipulation of arousal involves presenting the 

same underlying data as either a Word Cloud or a Bar Graph.  Data reliability is manipulated by 

altering the source of the underlying data as coming from text sentiments analyses of client emails 

versus social media postings made by the customer’s employees. By design, employees’ 

sentiments are more negative than positive such that they disconfirm the audit client’s assertions. 

The fourth and fifth visualizations are informative about the client’s revenue in general and present 

the number of new customers obtained by the audit client compared to its three main competitors, 

as well as the related revenue trends over the same period. After reviewing the visualizations, 

participants answered dependent variable questions, questions about their perceptions of 
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employees’ emotions and perceptions of evidence reliability.  Finally, they completed post-

experiment and demographic questions (see Figure 1).4 

[Insert Figure 1 about here] 

Independent Variables 

 We employ a 2 X 2 between-participant full factorial design where we manipulate the 

arousal level of a visualization and the reliability of the underlying data source for the visualization.  

The first independent variable, Arousal, is manipulated on two levels (Higher Arousal versus 

Lower Arousal). To operationalize arousal, we employ the two visualizations that were analyzed 

in experiment one.  We employ a Word Cloud to operationalize higher levels of arousal and a Bar 

Graph to operationalize lower levels of arousal. The Word Cloud contains emotionally charged 

words (both negative and positive) that express more details about employee emotion than the 

positive and negative cues in the Bar Graph.  In the higher arousal condition, the Word Cloud 

presents results of employees’ text sentiment analyses in order to determine whether the overall 

sentiment in the postings represent a positive, negative, or neutral attitude towards the audit client. 

Word Clouds are generated using algorithms to present textual data analyses by manipulating the 

visual characteristics of words using font size, color and weight.  Unlike other forms of 

visualizations, Word Clouds combine the data variable with the data label (i.e., the word itself) 

and use variations in font size, and word proximity to convey information about the frequency and 

provide rich context of how the words appear in the textual data.  

We operationalize the lower arousal condition by using a Bar Graph to visualize the 

sentiments in the same textual data used to generate the Word Cloud. While the Bar Graph depicts 

                                                           
4We developed the final experimental instrument after conducting pilot testing with current and former auditing 

participants. We also refined the instrument based on feedback from partners and research committee members from 

one of the participating Big 4 firms.  The partners found the case to be relevant, timely and realistic.   
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the extent of employees’ positive, negative and neutral attitude towards the client using the height 

of the bars, unlike the Word Cloud, it does not provide striking imagery of the sentiments (see 

Appendix I).  Both visualizations were derived from the same underlying data in order to represent 

the same data in formats with differing levels of arousal.  Thus, much like audit firms must choose 

how to visualize data, we examine how these important design choices affect auditor decision 

processes. 

The second independent variable, Reliability, is manipulated on two levels (More Reliable 

versus Less Reliable). To operationalize Reliability, we manipulate the source of the underlying 

data used to generate the visualizations. This is in keeping with guidance from auditing standards 

on audit evidence (e.g., AS No. 1105). Evidence from sources over which the audit client has 

controls that are verifiable by the auditors are considered to be more reliable compared with 

evidence from sources over which there are less verifiable controls. Therefore, consistent with 

auditing standards and with current Big Data literature, we operationalize the more reliable 

condition by using email data which is communicated by the customer to the audit client and is 

more verifiable by the auditors (PCAOB 2010; Vasarhelyi et al.  2015; Applebaum 2016).  

Participants in the More Reliable condition are told:  

The visualization group analyzed emails sent by [Customer Name] employees to the 

[Customer Name] Human Resources department and upper management and conducted 

text sentiment analyses on these emails to determine… 

 

We operationalize the Less Reliable condition by using data from social media sources (e.g., 

Twitter, Facebook, and Google+). Evidence generated by social media sites are removed from the 

audit client’s control and are less verifiable by the auditors. Participants in the less reliable 

condition are told: 
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The visualization group analyzed social media postings that are believed to have been 

made by [Customer Name] employees and conducted text sentiment analyses on these 

postings to determine… 

 

Dependent Variables 

We focus our analyses on two dependent variables. First, we measure Misstatement 

Amount by asking participants to indicate the amount of performance incentive revenue they 

recommend be recorded: “Assuming that you need to make a recommendation to the engagement 

partner regarding any need to adjust the client’s revenue from the new for-profit contract with 

[Customer Name], what amount of revenue would you recommend to the partner as the appropriate 

amount to be recorded for the Human Resources performance incentive?” Participants were 

instructed to indicate an amount between $0 to $4 million (the maximum amount of the incentive 

bonus).  Second, to determine the effects of the manipulations on audit processes, we measure how 

auditors would adjust budgeted audit hours for substantive revenue testing. We provide auditors 

with a baseline of audit hours taken to audit revenue in the prior year (i.e., 100 hours). We then 

ask participants to indicate the hours they would budget for the current year’s audit. To measure 

Audit Hours, we ask participants to “Indicate how many hours you want to budget this year for 

substantive testing of the revenue account.”      

IV. RESULTS AND ANALYSES – EXPERIMENT TWO 

Manipulation Checks 

We used several measures to determine whether manipulations of Arousal and Reliability 

effectively influenced the underlying constructs of interest. We previously analyzed the effects of 

the two visualization formats on arousal in Experiment One.  It was not possible to measure 

psychophysiological responses to the visualizations in the experiment with auditors.  Thus, we rely 

upon the findings from the first experiment to support differences in levels of arousal between the 
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two visualizations.  However, it is possible to measure auditors’ recognition of the emotional 

content of the visualization, and we collect a measure of their emotional response. We evaluate 

participants’ perceptions of the Emotions represented by the visualizations audit evidence using 

five questions. Participants indicated their perceptions that employees were 1) happy, 2) 

discouraged, 3) angry, 4) frustrated, and 5) depressed. Responses were measured on an anchored 

100-point scale where 0 = “Not at All” and 100 = “Completely.” We formed a net measure of 

Emotions by subtracting responses to negatively framed emotional questions (i.e., discouraged, 

angry, frustrated, and depressed) from the positively framed emotional question (i.e., employees 

were happy).5 The possible values for this measure range from – 400 to +100.  Comparing the 

mean Emotions score of participants in the Higher Arousal condition to those in the Lower Arousal 

condition, we find that participants in the Higher Arousal condition perceived significantly 

stronger negative emotions from the case materials than those in the Lower Arousal condition (-

208.23 versus -133.46, respectively; p < 0.001).  

 To determine whether the Reliability manipulation was effective, we employed three 

measures.  For the first measure, we ask, “In your opinion, how reliable was the data that was used 

to create the visualization of employee sentiment?” Responses were measured on a 100-point 

anchored scale with 0% indicating “Not Reliable at All” and 100% indicating “Completely 

Reliable.”  We find that participants in the More Reliable condition reported higher mean scores 

to the reliability question than participants in the Less Reliable condition (46.72 versus 38.76, 

respectively; p = 0.063). Using post-experimental questions, we further evaluate within-participant 

perceptions of the verifiability of email data sources versus social media data sources. Responses 

                                                           
5 The values for the Emotions measure range from – 400 to 100, where -400 represents the lowest negative 

interpretation of the employees’ emotions in the case materials, and 100 represents the highest positive 

interpretation. Factor analysis confirms that all questions load on one factor. 
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were measured on an anchored 100-point scale where 0 = Definitely Cannot Verify; 100 = 

Definitely Can Verify.  Results indicate that auditors perceive email to be a more verifiable data 

source than social media (54.04 versus 44.38, respectively; p = 0.005). Similarly, we asked 

participants about the reliability of an email data source compared with a social media data source. 

Responses were measured on an anchored 100-point scale where 0 = Definitely Not Reliable; 100 

= Definitely Reliable. Results indicate that auditors perceive email to be a more reliable data source 

than social media (40.67 versus 26.60, respectively; p < 0.001).    

Hypothesis Testing 

 H1a predicts that auditors who view Big Data visualizations that provide disconfirming 

evidence of a management estimate and promote higher levels of arousal will assess more 

misstatement than will auditors who view visualizations that promote lower levels of arousal. H1a 

and other hypotheses related to auditor assessment of misstatement are evaluated with an 

ANCOVA model where the independent variables are Arousal and Reliability, the covariate is 

audit experience, and the dependent variable is auditors’ assessment of the amount of revenue that 

should have been recognized for the human resources incentive bonus (see Table 4).  We do not 

find a main effect for Arousal of Big Data visualizations on Misstatement Amount (p = 0.265, one-

tailed).  However, there is a significant and disordinal interaction of Arousal and Reliability (p = 

0.029, one-tailed), which is discussed further in our analyses of the interaction.6   

[Insert Table 4 about here] 

                                                           
6 We also analyzed the main effect of Arousal using an alternative dependent variable (a scaled rating of the 

likelihood that Total Revenues are overstated).  Using this alternate scale measurement (not tabulated), there is a 

significant main effect of Arousal on perceptions that Total Revenues are misstated (p = 0.050), and auditors 

perceive that revenues are more likely to be overstated when the disconfirming visualization produces more arousal, 

relative to less arousal. 
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 In H1b, we posit that auditors who view Big Data visualizations that disconfirm 

management’s estimates and promote more arousal will increase audit hours more than when 

auditors view visualizations that promote less arousal.  To test the audit hours hypotheses, we 

employ an ANCOVA model where the dependent variable is auditors’ determination of budgeted 

Audit Hours.7  We find results consistent with this prediction. Auditors in the Higher Arousal 

condition report that they would budget significantly more audit hours than auditors in the Lower 

Arousal condition (means = 139.93 versus 129.28, respectively; p = 0.034; Table 5 Panel B), which 

supports H1b.  

[Insert Table 5 about here] 

 H2a posits that auditors who view disconfirming Big Data visualizations from more 

reliable sources will assess more revenue misstatement relative to auditors who view visualizations 

from less reliable sources. Consistent with our prediction, we find evidence of a main effect (p = 

0.056, Table 4 Panel B). However, similar to the main effect of Arousal on Misstatement Amount, 

this result must be considered in light of the significant interaction between Arousal and 

Reliability.   

 H2b proports an effect of Reliability on auditors’ budgeted hours decisions. This hypothesis 

proposes that auditors who view disconfirming Big Data evidence from more reliable sources will 

increase their budgeted audit hours more than when evidence is from less reliable sources. We do 

not find support for this prediction. Table 5 Panel B shows that there is no main effect of Reliability 

on Audit Hours (p = 0.365). These results suggest that when evaluating audit evidence in the form 

of Big Data visualizations, auditors may not adequately integrate evidence reliability into their 

                                                           
7 The model includes a covariate for years of audit experience because preliminary analyses revealed that audit 

experience is a significant determinant of budgeting decisions. 
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audit planning decisions, even though they are influenced by the Arousal level triggered by the 

visualizations.   

 H3 predicts that auditors who view visualizations that promote higher levels of arousal will 

be more influenced by the reliability of audit evidence than will auditors who view visualizations 

that promote lower levels of arousal. To test this interaction hypothesis, we examine the interactive 

effects of Arousal and Reliability on Misstatement Amount.  In Table 4 Panel B, the overall 

ANCOVA model indicates a significant interaction (p = 0.057; Figure 2) and provides evidence to 

support our hypothesis.  To further evaluate this interaction result, we examine planned contrast 

for the effects of Reliability on Misstatement Amount in each Arousal condition. In the Higher 

Arousal condition, participants suggest larger reductions to the amount of revenue recorded by 

management when the data underlying the disconfirming evidence are more reliable relative to 

when the data are less reliable (means = $2.96M versus $1.97M, respectively; p = 0.010; Table 4 

Panel C). However, when in the Lower Arousal condition, there is no statistical difference in the 

Misstatement Amounts participants suggest across the Reliability conditions (p = 0.810).   

Results of the planned contrasts indicate that the arousal level created by the Big Data 

visualization is an important factor that facilitates auditor integration of evidence source reliability 

into their decision making. The analyses of the interaction also reveal that the expected effects of 

arousal on revenue misstatement decisions only materialized when the data underlying the 

visualization were more reliable.  That is, visualizations that disconfirm management assertions 

and promote higher arousal levels caused auditors to be more likely to determine that management 

had overstated revenues when the data used to create these visualizations were from more reliable, 

relative to less reliable sources. 

[Insert Figure 2 about here] 
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Supplemental Analysis 

Our theory predicts that higher arousal levels will cause auditors to have stronger reactions 

to disconfirming audit evidence. While we did not find a main effect of visualizations on 

assessments of the amount of revenue to record, we did find a main effect of Arousal on an 

alternative scale measure of perceptions of total revenue overstatement.  To investigate the 

potential for mediating effects of auditors’ responses to the emotional content of visualizations 

(Emotions) on the relationship between the Arousal of the visualization and assessment of Total 

Revenue overstatement, we apply the Hayes and Preacher (2014) bootstrapped mediation 

technique. Utilizing this approach, we use 5,000 bootstrap sampling iterations of the data to 

compute a bias-corrected 95% confidence interval for the indirect effect of Emotions that we 

propose. Consistent with our theoretical expectations, Emotions mediate the relationship between 

Arousal and perceptions of the likelihood of Total Revenue overstatement (95% CI = LL: 0.043; 

UL: 0.459; where the confidence interval excludes zero; not tabled).  

VII. CONCLUSIONS  

We examined the effects of data visualization on auditor judgment by conducting two 

experiments with practicing Big 4 auditors and business students.  We conducted these 

experiments within the context of revenue recognition standards that allow for significant 

management judgment, and we extend the literature that has examined auditor integration of 

disconfirming audit evidence into their decision making. Taken together, the two experiments 

allow auditors, regulators and academics to better understand how new evidence sources and 

different types of visualizations influence auditor judgments and, ultimately, audit quality.   

Our first experiment employed a novel psychophysiological approach to examine the 

potential for different visualization formats to create significantly different levels of user arousal.  
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By employing cognitive pupillometry, we demonstrate that different visualizations of the same 

audit evidence can yield different levels of arousal.  Prior psychology research finds that arousal 

levels are important determinants of attention, cognitive processing, and memory encoding, and 

we propose that designing visualizations to enhance user arousal levels presents important 

opportunities to improve audit quality.  In addition to measuring pupillary responses to 

visualizations, the first experiment also employed eye-tracking techniques to determine whether 

the two visualization types we investigate result in reductions in the efficiency of audit evidence 

examination.  We found no significant differences in fixation duration or fixation counts between 

the two visualization types which suggests that increased arousal can be achieved without causing 

significant decreases in the efficiency of evidence evaluation. 

The second experiment employed the visualizations from the first experiment in an audit 

judgment context.  This experiment involved auditors from two Big 4 firms where we manipulated 

the format of a data visualization (Bar Graph versus Word Cloud) and the source of data (social 

media versus client email) used to create a visualization that disconfirmed a management estimate 

of revenue. The theoretical constructs of interest were the arousal level created by the 

visualizations and the reliability of data source used to create the visualizations.  Auditors have 

many options when determining how to visualize Big Data and other emerging data sources, and 

these visualization decisions could have significant implications for audit quality. We examined 

the potential for different visualizations to increase auditor attention to the disconfirming nature 

of evidence they review. Further, the experiment investigated the effects of data reliability on 

auditor decisions because no prior research has investigated how auditors integrate the reliability 

of data sources into their decisions when they interpret visualizations of Big Data and other 
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contemporary data sources. If auditors fail to attend to the reliability of data when evaluating 

visualizations, there would be significant threats to audit quality. 

Results of the auditor experiment indicate that creating visualizations that increase arousal 

caused auditors to place more weight on the disconfirming nature of the visualizations when 

assessing potential revenue misstatement and when determining audit effort.  Auditors who viewed 

visualizations of Big Data that disconfirmed management’s estimate of revenue and promoted 

higher levels of arousal (relative to lower levels of arousal) recommended greater decreases to 

reported revenue and proposed greater increases to budgeted audit hours. With regards to the 

reliability of the data used to create visualizations, there was no main effect of reliability on 

auditors’ assessments of audit budgeting decisions.  While this was unexpected, prior research has 

found that auditors can fail to appropriately consider data reliability.  

Trotman and Wright (2012) find that, instead of consistently considering reliable evidence, 

auditors only considered more reliable evidence (i.e., externally generated traditional audit 

evidence) in their fraud assessments when less reliable evidence (i.e., management-controlled 

evidence) was inconsistent. Similarly, Joyce and Biddle (1981) find evidence to suggest that 

auditors do not adequately distinguish between the reliability of variance explanations provided 

by management (less reliable) versus the same explanation provided by a third party (more 

reliable).  These studies suggest that although auditors are charged with considering the reliability 

of the evidence they evaluate, they are inattentive to some evidence sources and experience 

difficulties in differentiating and assimilating reliable evidence.  Our results suggest a need for 

increased auditor training around the reliability of data underlying visualizations.  However, the 

experiment results also revealed that visualizations that promoted higher levels of arousal caused 
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auditors to increase their attention to data reliability, suggesting multiple benefits of increased 

visualization arousal in audit practice. 

Overall, our experiments reveal opportunities to enhance audit quality and offer a method 

for examining the potential effects of different visualization types on auditor judgment prior to 

deployment of these visualizations in the field.  Presenting Big Data using visualizations that 

promote arousal has the capacity to enhance auditor recognition and use of disconfirming evidence 

and increase auditor attention to the reliability of new and emerging data sources.  In addition, we 

identify a potentially significant training opportunity for audit firms.  Auditors’ judgments about 

misstatement and audit planning were not influenced by data reliability for the visualization that 

promoted less arousal.  This finding indicates a current and meaningful risk to practice. 

 

 

 

 

 

  



35 

 
 

REFERENCES 

 

Appelbaum, D. 2016. Securing Big Data provenance for auditors: The Big Data provenance black 

box as reliable evidence. Journal of Emerging Technologies in Accounting 13: 17-36. 

 

Asare, Stephen K. and A. Wright. 2003. A Note on the Interdependence between Hypothesis 

Generation and Information Search in Conducting Analytical Procedures. Contemporary 

Accounting Research 20: 235-251. 

 

Bradley, M. M., L. Miccoli, M. A. Escrig, and P. J. Lang. "The pupil as a measure of emotional 

arousal and autonomic activation." Psychophysiology 45 (2008): 602-607. 

 

Benbasat, I., and A. Dexter. "An investigation of the effectiveness of color and graphical 

information presentation under varying time constraints." MIS quarterly (1986): 59-83. 

 

Brown-Liburd, H., H. Issa, and D. Lombardi. “Behavioral implications of Big Data's impact on 

audit judgment and decision making and future research directions.” Accounting Horizons  

29 (2015): 451-468. 

 

Chen, Y., Jermias, J., and Panggabean, T. (2016). The Role of Visual Attention in the Managerial 

Judgment of Balanced‐Scorecard Performance Evaluation: Insights from Using an Eye‐

Tracking Device. Journal of Accounting Research, 54(1) 113-146. 

Cloyd, C., and B. Spilker. "The influence of client preferences on tax professionals' search for 

judicial precedents, subsequent judgments and recommendations." The Accounting Review 

74 (1999): 299-322. 

 

Day, R. "Examining the validity of the Needleman–Wunsch algorithm in identifying decision 

strategy with eye-movement data." Decision Support Systems 49 (2010): 396-403. 

 

Dechow, P., W. Ge, C. Larson, and R. Sloan. “Predicting material accounting misstatements.” 

Contemporary Accounting Research 28 (2011): 17-82. 

 

Duke University Library. 2018. Data Visualizations. Available at: 

https://guides.library.duke.edu/datavis/vis_types 

 

Earley, C., V. Hoffman, and J. Joe. "Reducing management’s influence on auditors’ judgments: 

An experimental investigation of SOX 404 assessments." The Accounting Review 83 (2008): 

1461-1485. 

 

Fehrenbacher, D. D., Schulz, A. K. D., and Rotaru, K. (2018). The moderating role of decision 

mode in subjective performance evaluation. Management Accounting Research, 41, 1-10.  

 

Franzel, J., J. Rose, J. Thibodeau, and L.T. Williams. “The Audit of the Future: A Guide for 

Researchers and Regulators.” Unpublished paper, Bentley University, 2018. 

 

https://guides.library.duke.edu/datavis/vis_types


36 

 
 

Gepp, A., M. Linnenluecke, J. Terrence, and T. Smith. "Big data techniques in auditing research 

and practice: Current trends and future opportunities", Journal of Accounting Literature 40 

(2018): 102-115.  

 

Goldinger, S., and M. Papesh. 2012. Pupil Dilation Reflects the Creation and Retrieval of 

Memories. Current Directions in Psychological Science. 21, 2: 90-95.  

 

Griffith, E., K. Kadous, and D. Young. “How insights from the “new” JDM research can improve 

auditor judgment: Fundamental research questions and methodological advice.” Auditing: A 

Journal of Practice & Theory 35 (2015): 1-22. 

 

Hackenbrack, K. and M. Nelson. “Auditors' incentives and their application of financial 

accounting standards.”  The Accounting Review 71 (1996): 43-59. 

 

Hastie, R. and B. Park. “The relationship between memory and judgment depends on whether the 

judgment task is memory-based or on-line.” Psychological Review 93 (1986): 258-268. 

 

Hayes, A. F., and K. J. Preacher. “Statistical mediation analysis with a multicategorical 

independent variable.” British Journal of Mathematical and Statistical Psychology 67 

(2014): 451-470. 

 

Hayhoe, M., and D. Ballard. "Eye movements in natural behavior." Trends in cognitive sciences 

9 (2005): 188-194. 

 

Hertwig, R., T. Pachur, and S. Kurzenhäuser. “Judgments of risk frequencies: tests of possible 

cognitive mechanisms.” Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 31 (2005): 621-642. 

 

Hirst, D. E. “Auditors’ sensitivity to source reliability.” Journal of Accounting Research 32 (1994): 

113–126. 

 

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H. and Van de Weijer, J. 

(2011). Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford, UK: Oxford 

University Press. 

 

Holton, C. "Identifying disgruntled employee systems fraud risk through text mining: A simple 

solution for a multi-billion dollar problem." Decision Support Systems 46 (2009): 853-864. 

 

Howells, F. M., D. J. Stein, and V. A. Russell. "Perceived mental effort correlates with changes 

in tonic arousal during attentional tasks." Behavioral and Brain Functions 6 (2010): 39. 

 

Jenkins, J. G., and C. Haynes. “The persuasiveness of client preferences: An investigation of the 

impact of preference timing and client credibility.” Auditing: A Journal of Practice & Theory 

22 (2003): 143–154. 

 



37 

 
 

Joyce, E.J. and G. Biddle. “Are auditors' judgments sufficiently regressive?” Journal of 

Accounting Research 19 (1981): 323-349. 

 

Kadous, K., J. Kennedy, and M. Peecher. "The effect of quality assessment and directional goal 

commitment on auditors' acceptance of client-preferred accounting methods." The 

Accounting Review 78 (2003): 759-778. 

 

Kadous, K., J. Leiby, and M. Peecher. “How do auditors weight informal contrary advice? The 

joint influence of advisor social bond and advice justifiability.” The Accounting Review 88 

(2013): 2061–2087. 

 

Kadous, K., and A. Magro. "The effects of exposure to practice risk on tax professionals' 

judgements and recommendations." Contemporary Accounting Research 18 (2001): 451-

475. 

 

Kadous, K., A. Magro, B. Spilker. “Do effects of client preference on accounting professionals' 

information search and subsequent judgments persist with high practice risk?” The 

Accounting Review 83 (2008): 133-156. 

 

Kahneman, D., and J. Beatty. "Pupil diameter and load on memory." Science 154 (1966): 1583-

1585. 

 

Keller, P.A. and L. Block. “Vividness effects: A resource-matching perspective.” Journal of 

Consumer Research 24 (1997): 295-304. 

 

Knechel, W. R., and W. Messier. “Sequential auditor decision making: Information search and 

evidence evaluation.” Contemporary Accounting Research 6 (1990): 386–406. 

 

Komogortsev, O. V., Gobert, D. V., Jayarathna, S., Koh, D. H., and Gowda, S. M. “Standardization 

of automated analyses of oculomotor fixation and saccadic behaviors.” IEEE Transactions on 

Biomedical Engineering, 57(2010), 2635-2645. 

Kucewicz, M., J. Dolezal, V. Kremen, B. Berry, L. Miller, A. Magee, V. Fabian, and G. Worrell. 

“Pupil size reflects successful encoding and recall of memory in humans.” Scientific Reports 

8 (2018): 1-7. 

 

MacLeod, C. and L. Campbell. “Memory accessibility and probability judgments: An 

experimental evaluation of the availability heuristic.” Journal of Personality and Social 

Psychology 63 (1992): 890-902. 

 

Marquardt, C., and C. Wiedman. “How are earnings managed? An examination of specific 

accruals.” Contemporary Accounting Research 21 (2004): 461-491. 

 

Mathôt, S., and S. Van der Stigchel. "New light on the mind’s eye: The pupillary light response 

as active vision." Current directions in psychological science 24 (2015): 374-378. 

 



38 

 
 

McGill, A.L. and P. Anand. “The effect of vivid attributes on the evaluation of alternatives: The 

role of differential attention and cognitive elaboration.” Journal of Consumer Research 16 

(1989): 188-196. 

 

Nearon, B. “Foundations in auditing and digital evidence.” The CPA Journal 75 (2005): 32-34. 

 

Nuthmann, A., and E. Van Der Meer. "Time's arrow and pupillary response." Psychophysiology 

42 (2005): 306-317. 

 

Orquin, J., and K. Holmqvist. 2018. Threats to the validity of eye-movement research in 

psychology. Behavior Research Methods 50(4): 1645-1656. 

 

Partala, T., and V. Surakka. "Pupil size variation as an indication of affective processing." 

International journal of human-computer studies 59 (2003): 185-198. 

 

Public Company Accounting Oversight Board (PCAOB). Auditing Standard (AS) No. 1105. 

Audit Evidence. August 5, 2010a. Available at: 

https://pcaobus.org/Standards/Auditing/Pages/AS1105.aspx 

 

Public Company Accounting Oversight Board (PCAOB). Auditing Standard (AS) No. 2110. 

Identifying and Assessing Risks of Material Misstatement. August 5, 2010b. Available at: 

https://pcaobus.org/Standards/Auditing/Pages/AS2110.aspx 

 

Querino, E., L. dos Santos, G. Ginani, E. Nicolau, D. Miranda, M. Romano-Silva, and L. Malloy-

Diniz. “Cognitive effort and pupil dilation in controlled and automatic processes.” 

Translational Neuroscience 6 (2015): 168-173. 

 

Rayner, Keith. "Eye movements and attention in reading, scene perception, and visual search." 

The quarterly journal of experimental psychology 62 (2009): 1457-1506. 

 

Reimers, J. L., and M. Fennema. , M. G. “The audit review process and sensitivity to information 

source objectivity.” Auditing: A Journal of Practice & Theory 18 (1999): 117–123. 

 

Reutskaja, E., R. Nagel, C. F. Camerer, and A. Rangel. "Search dynamics in consumer choice 

under time pressure: An eye-tracking study." American Economic Review 101 (2011): 

900-926. 

 

Rose, A., J. Rose, K. Sanderson, and J. Thibodeau. “When should audit firms introduce analyses 

of Big Data into the audit process?” Journal of Information Systems 31 (2017): 81-99. 

 

Rotaru, K., Schulz A.K-D., and Fehrenbacher, D.D. (2018). New Technologies for Behavioral 

Accounting Experiments, in T. Libby and L. Thorne (eds.), Routledge Companion to 

Behavioral Accounting Research, pp. 253-272, Routledge.  

Shanteau, J., “Cognitive heuristics and biases in behavioral auditing: Review, comments and 

observations.” Accounting, Organizations and Society 14 (1989): 165-177. 

https://pcaobus.org/Standards/Auditing/Pages/AS1105.aspx


39 

 
 

 

Shedler, J. and M. Manis. “Can the availability heuristic explain vividness effects?” Journal of 

Personality and Social Psychology 51 (1986): 26-36. 

 

Sirois, S. and J. Brisson. (2014). Pupillometry. Wiley Interdisciplinary Reviews: Cognitive 

Science, 5(6): 679-692. 

Stanners, R. F., M. Coulter, A. W. Sweet, and P. Murphy. "The pupillary response as an 

indicator of arousal and cognition." Motivation and Emotion 3(1979): 319-340. 

 

Thayer, J. “Determinants of investors' information acquisition: Credibility and confirmation.” The 

Accounting Review 86 (2001): 1-22. 

 

Tan, H., and K. Jamal.  “Do auditors objectively evaluate their subordinates’ work?” The 

Accounting Review 76 (2001): 99–110. 

 

Tobii (2014). Tobii TX300 Eye Tracker User Manual. Tobii Technology. Available at: 

https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/tobii-pro-tx300-eye-tracker-user-

manual.pdf 

Trotman, K.T. and W. Wright. “Triangulation of audit evidence in fraud risk assessments.” 

Accounting, Organizations and Society  37 (2012): 41-53. 

 

Van der Wel, P., and H. van Steenbergen. (2018). Pupil dilation as an index of effort in cognitive 

control tasks: A review Psychonomic Bulletin & Review, 1-11. 

Van Steenbergen, H., and G. PH Band. "Pupil dilation in the Simon task as a marker of conflict 

processing." Frontiers in human neuroscience 7 (2013): 215. 

 

Vasarhelyi, M., A. Kogan, and B. Tuttle. “Big Data in accounting: An overview.” Accounting 

Horizons 29 (2015): 381-396. 

 

Verney, S. P., E. Granholm, and D. P. Dionisio. "Pupillary responses and processing resources 

on the visual backward masking task." Psychophysiology 38 (2001): 76-83. 

 

Wedel, M., and R. Pieters. "A review of eye-tracking research in marketing." In Review of 

marketing research, pp. 123-147. Emerald Group Publishing Limited, 2008. 

 

Yoon, K., L. Hoogduin, and L. Zhang. "Big Data as complementary audit evidence." Accounting 

Horizons 29 (2015): 431-438. 

 

  



40 

 
 

Appendix I – Data Visualizations  

 

Word Cloud  

 

 

Bar Graph 

 

 

 

Source Mentions Positive Positive% Neutral Neutral% Negative Negative% Net Sentiment

Total 8117 1496 18% 2130 26% 4492 55% -37%
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Appendix II - Technical Specifications of the Eye Tracking and Pupil Measurements8 

 

Core 

parameters  

Parameter description  Parameter specifications adopted in the 

experiment 

Apparatus Sampling procedure  Binocular recording procedure was used (i.e. 

pupil dilation and eye tracking measures are 

based on the data acquired from both left and 

right eyes of the participants) 

Name and produce of 

the eye tracking device  

Tobii TX300, Tobii (Sweden) 

Type of eye tracking 

device 

Desk-mounted 

Sampling rate 300 Hz 

Sampling rate 

variability 

0.3%  

Processing latency  1.0 – 3.3 ms 

Accuracy9 0.40 – at ideal conditions10, 0.30 - at 250 gaze, 

0.60 - at 300 gaze, 0.60 – at 1 lux11, 0.40 – at 300 

lux, 0.50 – at 600 lux, 0.50 – at 1000 lux. 

Precision  0.010 – with Stamper filter (for more details on 

the applied Stamper algorithm for noise 

reduction see Stamper, 1993) 

Eye tracking software 

used 

Tobii Studio 3.4.5 

Chin rest used Yes 

   

                                                           
8 Informed by Orquin and Holmqvist (2018). 
9 The angular average distance from the actual gaze point to the one measured by the eye tracker.  
10 The default experimental setup of this study conforms to the definition of ‘accuracy under ideal conditions’ 

outlined in Tobii (2014) as follows: (i) the head movement of the participant is fixed in a chinrest; and (ii) data 

collected immediately after calibration, in a controlled laboratory environment with constant illumination, with 9 

stimuli points (related to the 9-point calibration procedure undertaken in this study) at gaze angle ≤ 180. 

.11 Unit of illuminance and luminous emittance, measuring luminous flux per unit area. One lux is equal to one 

lumen per square metre. 
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Monitor Screen size 23ˈ̎ 

Screen resolution 1920 x 1080 pixel 

Distance between 

participant and screen 

Operating distance: 50-80cm 

Default distance used in this study: 65cm  

Calibration How many points in 

calibration  

9-point calibration  

Amount of recalibration  No recalibration used12  

Areas of 

Interest 

(AOIs) 

AOIs used for eye 

tracking data analysis 

Visual representation of sentiment data using 

stacked bar graph and word cloud illustrated in 

Appendix I. 

Exclusions Number of trials 

excluded 

None 

Number of participants 

excluded due to the 

missing eye tracking 

data 

None 

Data quality threshold A data quality threshold of 15% was used, i.e. 

at least 85% of the eye tracking data while 

attending two AOIs had to be present, 

otherwise the participant was excluded from 

the sample.  

Event 

detection  

What algorithm is used 

for event detection 

The IV-T fixation filter (Komogortsev et al., 

2010) was adopted via the selection of global 

settings in the eye tracking software (Tobii 

Studio 3.4.5). A 60ms threshold was selected 

as part of within IV-T Tobii filter parameters 

to define fixations.  

 

 

 

                                                           
12 As the participants used chin rests, and the duration of the study was relatively short (approximately 15 minutes, 

including the time spent on calibration procedure, on familiarizing with the instructions, on attending the 

experimental treatments, and on answering the post-experimental questions) no recalibration of the eye tracking 

devices was required.  
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Figure 1 

Sequence of Experimental Procedures 

 

 

 

 

 

 

  

Company Background Information 

• Information about the company (e.g., publicly traded, service 

offering in not-for-profit business sector, fiscal year-end)  

Auditor Testing 

• Results of interim audit procedures over revenue including 

tests of controls, analytical procedures, tests of detail 

• Audit procedures performed at year-end including tests of 

controls, analytical procedures, tests of detail 

• Contract with sole for-profit customer: service offerings – 

Human Resources, Accounting and Administration, Sales and 

Marketing 

• Revenue recognition guidance 

Big Data Visualizations 

• Hashtag analysis comparing the number of social media 

mentions of the client versus their competitors 

• Contract customer employee engagement survey 

• Text sentiment analysis of contract customer employees 

[Manipulated visualization and data source – Word Cloud or 

Bar Graph / Email or Social Media] 

• Number of new client wins in not-for profit industry 

competitor comparison 

• Annual revenues competitor comparison  

 

 

Participant Responses 

• Assessment of total revenue misstatement, assessment of 

revenue by contract incentive area, and other measures 

• Assessment of contract customer employee morale, and other 

perceptions of visualization features 

• Manipulation checks and post experimental questions 

• Demographic questions 
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Figure 2 

Experiment 1: Interactive Effects Arousal and Data Reliability on Misstatement Amount 

 

 
 

 
Variable Definitions: 

- Misstatement Amount = Amount auditors suggested should be recorded for Human Resource incentive bonus 

revenue. Participant response to the statement, “Assuming that you need to make a recommendation to the 

engagement partner regarding any need to adjust the client’s revenue from the new for-profit contract with 

[Customer Name], what amount of revenue would you recommend to the partner as the appropriate amount to 

be recorded for the Human Resources performance incentive?” Participants were instructed to indicate an 

amount between $0 to $4 million.    

- Arousal = Word Cloud visualization (Higher Arousal), Bar Graph visualization (Lower Arousal). 

- Reliability = Reliability of source underlying Big Data visualization; Company email (More Reliable), Social 

media (Less Reliable). 

- Arousal*Reliability = Interaction of Arousal and Reliability independent variables.  
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TABLE 1 

Experiment 1: Descriptive Statistics and ANCOVA for Pupillometry Measures 

 

Panel A: Pupillary Response Ratio (Standard Deviation) [Number of Participants]   

Visualization Type Pupillary Response Ratio 

 

Word Cloud 1.023 

(0.022) 

[74] 

Bar Graph 0.979 

(0.019) 

[74] 

 

 

Panel B: Within-Subjects Contrasts for Repeated Measures ANCOVA (DV = Pupillary 

Response Ratio) 

Factor df Mean Square F-value p-valuea 

Visualization Type 1 0.073 120.521 < 0.001 

Visualization Type x Order 1 0.015 25.262 < 0.001 

Error 72 0.001   
a p values are two-tailed 

 

Panel C: Between-Subjects Effects of Order ANCOVA (DV = Pupillary Response Ratio) 

Source df Mean Square F-value p-valuea 

Order 1 2.82E-05 0.969 0.328 

Error 72 2.91E-05   
a p values are two-tailed 
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TABLE 2 

Experiment 1: ANCOVA for Eye Tracking Measures 

 

 

Panel A: Within-Subjects Contrasts for Repeated Measures ANCOVA (DV = Fixation Count) 

Factor df Mean Square F-value p-valuea 

Visualization Type 1 941.84 1.022 0.315 

Visualization Type x Order 1 385.95 0.419 0.520 

Error 72 921.61   
a p values are two-tailed 

 

 

 

Panel B: Within-Subjects Contrasts for Repeated Measures ANCOVA (DV = Fixation Duration) 

Factor df Mean Square F-value p-valuea 

Visualization Type 1 39.87 0.948 0.334 

Visualization Type x Order 1 63.39 1.507 0.224 

Error 72 42.07   
a p values are two-tailed 
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TABLE 3 

Experiment 2: Auditor Participant Demographics (n=120) 

 

 

Demographic 
Mean 

(Standard Deviation) 

Gender: Male 59% 

Years Audit Experience 
2.7 

(1.2) 

Years Analytical Review Experience 
2.0 

(1.4) 
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TABLE 4 

Experiment 2: Descriptive Statistics and ANCOVA for Misstatement Amount 

 

Panel A: Mean in Millions $ (Standard Deviation) [Number of Participants]   

 Higher Arousal 

Visualization 

Lower Arousal 

Visualization 

Total 

More Reliable Evidence 1.97 

(1.57) 

[28] 

2.61 

(1.55) 

[29] 

2.29 

(1.58) 

[57] 

Less Reliable Evidence 2.96 

(1.35) 

[33] 

2.61 

(1.42) 

[30] 

2.79 

(1.38) 

[63] 

Total 2.51 

(1.52) 

[61] 

2.61 

(1.47) 

[59] 

2.56 

(1.49) 

[120] 

 

Panel B: ANCOVA Results for Misstatement Amount  

Factor Df F-value p-valuea 

Arousal 1 0.397 0.530 

Reliability 1 3.733 0.056 

Arousal*Reliability 1 3.690 0.057 

Audit Experience 1 2.313 0.131 

Error 115   
a p values are two-tailed 

 

Panel C: Results for Simple Effects of Misstatement Amount 

 

Factor More Reliable Less Reliable t-value p-value a 

Higher Arousal 1.97 

 

2.96 

 

2.621 0.010 

Lower Arousal 

 

2.61 2.61 0.242 0.810 

a p values are two-tailed 

 

Variable Definitions: 

- Misstatement Amount = Amount auditors suggested should be recorded for Human Resource incentive bonus 

revenue. Participant response to the statement, “Assuming that you need to make a recommendation to the 

engagement partner regarding any need to adjust the client’s revenue from the new for-profit contract with 

[Customer Name], what amount of revenue would you recommend to the partner as the appropriate amount to 

be recorded for the Human Resources performance incentive?” Participants were instructed to indicate an 

amount between $0 to $4 million. Values shown in $millions, rounded to two decimal places.   

- Arousal = Arousal of Big Data disconfirming evidence presentation; Word Cloud visualization (Higher 

Arousal), Stacked Bar Graph visualization (Lower Arousal). 

- Reliability = Reliability of source underlying Big Data visualization; Company email (More Reliable), Social 

media (Less Reliable). 

- Arousal*Reliability = Interaction of Arousal and Reliability independent variables.  

- Audit Experience = Years of audit experience. 
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TABLE 5 

Experiment 2: Descriptive Statistics and ANCOVA for Auditor Assessment of Budgeted Audit 

Hours 

 

Panel A: Mean (Standard Deviation) [Number of Participants]   

 Higher Arousal 

Visualization 

Lower Arousal 

Visualization 

Total 

More Reliable Evidence 142.36 

(43.81) 

[28] 

130.95 

(24.43) 

[29] 

136.55 

(35.45) 

[57] 

Less Reliable Evidence 137.88 

(30.47) 

[33] 

127.67 

(33.08) 

[30] 

133.02 

(31.90) 

[63] 

Total 139.93 

(36.93) 

[61] 

129.28 

(28.95) 

[59] 

134.70 

(33.54) 

[120] 

 

Panel B: ANCOVA Results for Auditor Assessment of Budgeted Audit Hours  

Factor Df F-value p-valuea 

Arousal 1 4.614 0.034 

Reliability 1 0.829 0.365 

Arousal*Reliability 1 0.088 0.767 

Audit Experience 1 16.611 < 0.001 

Error 115   
a p values are two-tailed 

 

Variable Definitions: 

- Budgeted Audit Hours = Assessment of that audit hours budgeted to perform revenue substantive testing. 

Participant response to the statement, “Indicate how many hours you want to budget this year for substantive 

testing of the revenue account.”  

- Arousal = Arousal of Big Data disconfirming evidence presentation; Word Cloud visualization (Higher 

Arousal), Stacked Bar Graph visualization (Lower Arousal). 

- Reliability = Reliability of source underlying Big Data visualization; Company email (More Reliable), Social 

media (Less Reliable). 

- Arousal*Reliability = Interaction of Arousal and Reliability independent variables.  

- Audit Experience = Years of audit experience. 

 

 

 


