Deep Multi-Agent Reinforcement Learning using DNN-Weight Evolution to Optimize Supply Chain Performance

Date
2018-01-03
Authors
Fuji, Taiki
Ito, Kiyoto
Matsumoto, Kohsei
Yano, Kazuo
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
To develop a supply chain management (SCM) system that performs optimally for both each entity in the chain and the entire chain, a multi-agent reinforcement learning (MARL) technique has been developed. To solve two problems of the MARL for SCM (building a Markov decision processes for a supply chain and avoiding learning stagnation in a way similar to the "prisoner's dilemma"), a learning management method with deep-neural-network (DNN)-weight evolution (LM-DWE) has been developed. By using a beer distribution game (BDG) as an example of a supply chain, experiments with a four-agent system were performed. Consequently, the LM-DWE successfully solved the above two problems and achieved 80.0% lower total cost than expert players of the BDG.
Description
Keywords
Intelligent Decision Support for Logistics and Supply Chain Management, Deep learning, Evolutionary computation, Multi-agent reinforcement learning, Multi-agent system, Supply chain management
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.